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ABSTRACT
We report on the mechanization of (preference-based) conditional normative reason-
ing. Our focus is on Åqvist’s system E for conditional obligation, and its extensions.
Our mechanization is achieved via a shallow semantical embedding in Isabelle/HOL.
We consider two possible uses of the framework. The first one is as a tool for meta-
reasoning about the considered logic. We employ it for the automated verification
of deontic correspondences (broadly conceived) and related matters, analogous to
what has been previously achieved for the modal logic cube. The equivalence is
automatically verified in one direction, leading from the property to the axiom.
The second use is as a tool for assessing ethical arguments. We provide a computer
encoding of a well-known paradox (or impossibility theorem) in population ethics,
Parfit’s repugnant conclusion. While some have proposed overcoming the impos-
sibility theorem by abandoning the presupposed transitivity of “better than,” our
formalisation unveils a less extreme approach, suggesting among other things the
option of weakening transitivity suitably rather than discarding it entirely. Whether
the presented encoding increases or decreases the attractiveness and persuasiveness
of the repugnant conclusion is a question we would like to pass on to philosophy and
ethics.

KEYWORDS
Conditional obligation; Isabelle/HOL; correspondence; automated theorem
proving; population ethics; mere addition/repugnant conclusion paradox;
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1. Introduction

We report on the mechanization of (preference-based) conditional normative reason-
ing. Our focus is on Åqvist’s system E for conditional obligation, and its extensions.
Our mechanization is achieved via a shallow semantical embedding in Isabelle/HOL
adapting the methods used by Benzmüller et al. (2015). To look at Standard Deontic
Logic (SDL) and extensions (Chellas, 1980; Parent and van der Torre, 2021) would
not be very interesting. First, no new insights would be gained, since SDL is a normal
modal logic of type KD, which is already covered by the prior work of Benzmüller
and colleagues. Secondly, SDL is vulnerable to the well-known deontic paradoxes, in-
cluding in particular Chisholm’s paradox of contrary-to-duty obligation, see Parent
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and van der Torre (2021) for details. We thus focus here on Dyadic Deontic Logics
(DDLs) with a preference-based semantics, which originate from the works of Hansson
(1969) and Lewis (1973). To represent conditional obligation sentences, an “inten-
sional” dyadic operator (which is weaker than material implication) is employed. The
proposed semantics generalizes that of SDL: the SDL-ish binary classification of states
into good/bad is relaxed to allow for grades of ideality and accommodate classifications
such as best, 2nd-best, and so forth. More specifically, a preference relation ⪰ ranks
the possible worlds in terms of comparative goodness or betterness.1 The conditional
obligation of ψ, given φ (notation: ⃝(ψ/φ)) is evaluated as true if the best φ-worlds
are all ψ-worlds. Like in modal logic, different properties of the betterness relation
yield different systems. For further details on this framework, the reader is referred to
the overview chapter by Parent (2021) found in the second volume of the Handbook of
Deontic Logic and Normative Systems.

In this paper, our emphasis is on two possible uses of the mechanized tool. First, we
employ it as a tool for meta-reasoning about the considered logics. So far the corre-
spondences between properties and modal axioms have been established “with pen and
paper”. This raises the question of how much of these correspondences can be automat-
ically explored by modern theorem-proving technology. The automatic verification of
correspondences can be done for the modal cube (Benzmüller et al., 2015). We want to
understand if it can also be done for DDL. Benzmüller et al. (2015) write: “automation
facilities could be very useful for the exploration of the meta-theory of other logics,
for example, conditional logics, since the overall methodology is obviously transferable
to other logics of interest”. Here we follow up on that suggestion, building on further
prior results from Benzmüller et al. (2019), where the weakest available system (called
E) has faithfully been embedded in Higher-Order Logic (HOL). In the present paper,
we consider extensions of E. We look at connections or correspondences between ax-
ioms and semantic conditions as “extracted” by relevant soundness and completeness
theorems. Thus, “correspondence” is taken in the same (broad) sense that Hughes and
Cresswell have in mind when they write:

“D, T, K4, KB [are] produced by adding a single axiom to K and [...] in each case the
system turns out to be characterized by [sound and complete wrt] the class of models in
which [the accessibility relation] R satisfies a certain condition. When such a situation
obtains–i.e. when a system K+α is characterized by the class of all models in which R
satisfies a certain condition−we shall [...] say [...] that the wff α itself is characterized
by that condition, or that the condition corresponds [their italics] to α.” (Hughes and
Cresswell, 1984, p. 41)

This is different from correspondence theory in the sense of Sahlqvist (1975) and
van Benthem (2001). Typically, Sahlqvist-style modal correspondence theory studies
the equivalence between modal formulas and first-order formulas over Kripke frames
via the so-called standard translation. The goal is to identify syntactic classes of modal
formulas that can be shown to define first-order conditions on frames, and which are
themselves computable via an algorithm. Correspondence theory in this sense has not
been developed for preference-based dyadic deontic logic and conditional logic yet. This
is in part due to the more complex form of the truth conditions for the conditional.
The Sahlqvist/van Benthem method allows to establish an equivalence between an
axiom and a property. By contrast, our method will give us only one direction of the
equivalence, from the property to the axiom, but not yet the other direction.

A distinctive feature of our method is its flexibility. We will primarily deal with

1For i ⪰ j, read “i is at least as good as j”.
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the conventional evaluation pattern in terms of best antecedent-worlds, distinguishing
between two notions of best, optimality and maximality, as is the custom in rational
choice theory. For the sake of completeness, we will also consider variant truth con-
ditions that do not rely on the limit assumption, which some consider controversial.
Notably, Lewis (1973) rejected this assumption. In a deontic context, it amounts to
assuming the existence of “the best of all possible worlds”. For simplicity, we will
confine our analysis to Lewis’s variant rule.

The second use we consider for our mechanized system is as a tool for assessing
ethical arguments in philosophical debates. As an illustration, we look at one of the
well-known paradoxes or impossibility theorems in population ethics, the so-called
“repugnant conclusion” due to Parfit (1984). We provide a computer encoding of the
repugnant conclusion to make it amenable to formal analysis and computer-assisted
experiments. We believe that the formalization has the potential to further stimulate
the philosophical debate on the repugnant conclusion, given the considerable simpli-
fications it achieves. Specifically, our formalization hints at the possibility of a fresh
perspective on the scenario. While some have proposed overcoming the impossibility
theorem by relinquishing the presupposed transitivity of “better than,” this solution
is often deemed too radical. We distinguish between “better than” as a relation on
formulas and as a relation on possible worlds, the second being used to elucidate the
formal meaning of the first. Shifting the emphasis on the second, our formalisation
unveils a less extreme approach. It consists in weakening transitivity suitably rather
than discarding it entirely. However, we show that not all candidate weakenings of
transitivity will do. In particular, drawing on Parent (2024), we argue that acyclicity
(or even quasi-transitivity) does the job, but not the interval order condition. We also
raise the question if transitivity is the sole cause of the paradox. We point out that
under the standard interpretation of “best” in terms of maximality (quasi-)transitivity
generates an inconsistency only if the set of possible worlds is assumed to be finite−an
assumption that might appear overly limiting, if not arbitrary. This finding allows us
to resolve (negatively) an open problem from previous work:2 whether under the rule
of maximality the finite model property holds for preference models with transitive,
quasi-transitive, or interval order relations.

Until now, these particular points have remained unnoticed. Previously, one could
verify them manually, but now, automation eliminates the need for logical expertise.
Additionally, experimenting and implementing variations, such as changing the evalu-
ation rule for the conditional, is straightforward. The practicality of the proposed tool
lies in its ability to swiftly (dis-)confirm alternative hypotheses with minimal reliance
on logical expertise. With this case study–the first of its kind–we hope to provide ev-
idence that automated tools may help to facilitate the understanding and assessment
of ethical arguments in philosophical debates. Previously, the second author utilized
similar techniques in computational metaphysics. Notably, the inconsistency within
the axioms of Gödel’s ontological argument went unnoticed until 2013, when it was
automatically identified by the higher-order theorem prover Leo-II−see Benzmüller
and Woltzenlogel Paleo (2016).

Readers should be warned that there is less standardization in preference semantics
for dyadic deontic logic than in the usual Kripke-style semantics for (monadic) deontic
logic, and more room for variation. This is because several factors must be juggled all
at once. In this paper we stick to Åqvist (1987, 2002)’s approach, but the account is
also applicable to further variants. Those who wish to get a general overview of the

2Cf. Goble (2019) and Parent (2021; 2024).
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possible approaches that can be taken might find it useful to consult Makinson (1993).
The interested reader will find in Goble (2019) and Parent (2021) further pointers to
the literature.

The paper is organized as follows. Section 5 recalls system E and its extensions.
Section 3 shows the embedding of E in Isabelle/HOL. Section 4 studies the corre-
spondence between the properties of the betterness relation and the axioms. Section 5
discusses the repugnant conclusion. Section 6 concludes.3

2. System E

We describe the language, the semantics and proof theory of system E and its exten-
sions.

2.1. Language

The language, call it L, is defined by the following BNF:

Atomic formulas: p ∈ P
Formulas: A ∈ L

A ::= p |¬A | A ∨A | □A | ⃝(A/A)

¬A is read as “not-A”, and A ∨B as “A or B”. □A is read as “A is settled as true”,
and ⃝(B/A) as “B is obligatory, given A”.

The Boolean connectives other than “¬” and “∨” are defined as usual. 3A is short
for ¬□¬A. P (B/A) (“B is permitted, given A”) is short for ¬⃝ (¬B/A), ⃝A (“A is
unconditionally obligatory”) and PA (“A is unconditionally permitted”) are short for
⃝(A/⊤) and P (A/⊤), where ⊤ denotes a tautology.

2.2. Semantics

We start with the main ingredients of the semantics. A preference model is a structure
M = (W,⪰, v), where W is a non-empty set of possible worlds (called its “universe”),
⪰ is a preference relation ranking the elements ofW in terms of betterness or compar-
ative goodness, and v is a function assigning to each atomic formulas a subset of W
(intuitively, the subset of those worlds where the atomic formula is true). a ⪰ b may
be read “a is at least as good as b”. Also, ≻ is the strict counterpart of ⪰, defined by
a ≻ b (a is strictly better than b) iff a ⪰ b and b ̸⪰ a. And ≈ is the equal goodness
relation, defined by a ≈ b (a and b are equally good) iff a ⪰ b and b ⪰ a. For future
reference, note that by definition ≻ is irreflexive (for all a, a ̸≻ a) and asymmetric (for
all a, b, if a ≻ b then b ̸≻ a).

A model M is said to be finite if its universe W is. The truth conditions for modal
and deontic formulas read:

• M,a ⊨ 2φ iff ∀b ∈W we have M, b ⊨ φ

3The theory files are available for downloading at http://logikey.org under sub-repository
“/Deontic-Logics/cube-dll/” (files “DDLcube.thy”, “mere addition opt.thy”, “mere addition max.thy” and

“mere addition lewis.thy”). A corresponding (but slightly modified) Isabelle/HOL dataset is presented in Par-
ent and Benzmüller (2024).
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• M,a ⊨ ⃝(ψ/φ) iff ∀b ∈ best(φ) we have M, b ⊨ ψ

When no confusion can arise, we omit the reference to M and simply write a |= φ.
Intuitively, ⃝(ψ/φ) is true if the best φ-worlds are all ψ-worlds. There is variation
among authors regarding the formal definition of “best”. It is sometimes cast in terms
of maximality (we call this the max rule) and some other times cast in terms of
optimality (we call this the opt rule). A φ-world a is maximal if it is not (strictly)
worse than any other φ-world. It is optimal if it is at least as good as any φ-world. An
optimal element is maximal, but not the other way around. The two notions coincide
only when “gaps” (incomparabilities) in the ranking are ruled out. Formally:

Max rule Opt rule
best(φ) = max(φ) best(φ) = opt(φ)

where

a ∈ max(φ) ⇔ a |= φ & ¬∃b (b ⊨ φ & b ≻ a)

a ∈ opt(φ) ⇔ a |= φ & ∀b (b ⊨ φ→ a ⪰ b)

The relevant properties of ⪰ are (universal quantification over worlds is left implicit):

• Reflexivity: a ⪰ a;
• Totality or (strong) connectedness: a ⪰ b or b ⪰ a (or both);
• Transitivity: if a ⪰ b and b ⪰ c, then a ⪰ c;
• Various weakenings of transitivity (from so-called rational choice theory):

◦ Quasi-transitivity: if a ≻ b and b ≻ c then a ≻ c;
◦ Acyclicity: if a ≻⋆ b, then b ̸≻ a, where ≻⋆ is the transitive closure of ≻;
◦ Suzumura consistency: if a ⪰⋆ b, then b ̸≻ a, where ⪰⋆ is the transitive
closure of ⪰;

◦ Interval order: ⪰ is reflexive and Ferrers (if a ⪰ b and c ⪰ d, then a ⪰ d or
c ⪰ b).

Intuitively, quasi-transitivity demands that the strict part of the betterness relation
be transitive. Acyclicity rules out strict betterness cycles. Suzumura consistency rules
out cycles with at least one instance of strict betterness. Acyclicity may be interpreted
as generalizing asymmetry to a path of arbitrary length. Totality implies reflexivity.
Given reflexivity and Ferrers, totality follows, and so the interval order condition
can equivalently be defined by the pair “totality + Ferres”. Intuitively, the interval
order condition permits instances where transitivity of equal goodness fails, due to
discrimination thresholds. These are cases where a ≈ b and b ≈ c but a ̸≈ c (see
Luce 1956).

These weakenings of transitivity are discussed in greater depth in Parent (2024).
Fig. 1 shows their relationships. An arrow from one condition to the other means that
the first implies the second. The lack of an arrow between two conditions means that
they are independent.4

4Proofs and additional discussion may be found in Parent (2024).

5



Figure 1.: Weakenings of transitivity (Parent (2024))
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other way around. Each of quasi-transitivity and Suzumura consistency implies

acyclicity, but the converses fail. Quasi-transitivity and Suzumura consistency

are independent, as are interval order and Suzumura consistency.
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Fig. 4 Implication relations

I state these relationships in full.

Proposition 9 The following applies:

(i) Interval order ) quasi-transitivity;

(ii) Transitivity ) quasi-transitivity and Suzumura consistency;

(iii) Quasi-transitivity or Suzumura consistency ) acyclicity.

Proof For (i), assume ⌫ is an interval order. Suppose a � b and b � c. By definition

of �, a ⌫ b, b ⌫ c, b 6⌫ a, and c 6⌫ b. By negative transitivity (see Fact 8) c 6⌫ a. By

totalness, a ⌫ c. By definition of �, a � c.

For (ii), assume ⌫ is transitive. First, I consider the case of quasi-transitivity.

Assume a � b and b � c. By definition, a ⌫ b and b ⌫ c. By transitivity of ⌫, a ⌫ c.

By hypothesis, b 6⌫ a. By transitivity of ⌫ again, c 6⌫ a. Hence a � c as required.

Next, I consider the case of Suzumura consistency. Assume, per absurdum, that

⌫ is not Suzumura consistent. Hence, for some a and b, a ⌫? b but b � a. The latter

implies that a 6⌫ b, by definition, while the former implies that a ⌫ b, by Fact 1 (i).

Contradiction.

Lewis’s limit assumption is meant to rule out sets of worlds without a “limit” (viz.
a best element). Its exact formulation varies among authors. It exists in (at least) the
following four versions, where best ∈ {max, opt}:

Limitedness

If ∃x s.t. x |= φ then best(φ) ̸= ∅ (LIM)

Smoothness (or stopperedness)

If x |= φ, then: either x ∈ best(φ) or ∃y s.t. y ≻ x & y ∈ best(φ) (SM)

A betterness relation ⪰ will be called “opt-limited” or “max-limited” depending on
whether (LIM) holds with respect to opt or max. Similarly, it will be called “opt-
smooth” or “max-smooth” depending on whether (SM) holds with respect to opt or
max. For pointers to the literature, and the relationships between these versions of the
limit assumption, see Parent (2014).

The above semantics may be viewed as a special case of the selection function seman-
tics favored by Stalnaker and generalized by Chellas (1975). The preference relation
is replaced with a selection function f from formulas to subsets of W , such that, for
all φ, f(φ) ⊆ W . Intuitively, f(φ) outputs all the best φ-worlds. The evaluation rule
for the dyadic obligation operator is thus given as: ⃝(ψ/φ) holds when f(φ) ⊆ ∥ψ∥,
where ∥ψ∥ is the set of ψ-worlds. It is known that when suitable constraints are put
on the selection function, the two semantics validate exactly the same set of formu-
las − cf. Parent (2015) for details.5 The correspondence between constraints put on
the selection function and modal axioms have been verified by automated means by
Benzmüller et al. (2012). A comparison between this prior study and ours is left as a
topic for future research.

2.3. Systems

The relevant systems are shown in Fig. 2. A line between two systems indicates that
the system to the left is strictly included in the system to the right. E, F and G are
from Åqvist (1987). F+CM and F+DR are from Parent (2014) and Parent (2024),
respectively.

5One can go one step further, and make the selection function semantics an instance of a more general seman-
tics equipped with a neighborhood function, like in traditional modal logic (cf. Chellas (1975)). Neighborhood

semantics for dyadic deontic logic are investigated by Segerberg (1971), Nortmann (1986) and Goble (2004)
among others.
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F+(DR)

Figure 2.: Systems

All the systems contain the classical propositional calculus and the modal system
S5.6 Then they add the following axiom schemata:

• For E (the naming follows Parent (2021)):

S5-schemata for 2 (S5)

⃝ (ψ → ξ/φ) → (⃝(ψ/φ) → ⃝(ξ/φ)) (COK)

⃝ (ψ/φ) → 2⃝ (ψ/φ) (Abs)

2φ → ⃝(φ/ψ) (Nec)

2(φ ↔ ψ) → (⃝(ξ/φ) ↔ ⃝(ξ/ψ)) (Ext)

⃝ (φ/φ) (Id)

⃝ (ξ/φ ∧ ψ) → ⃝(ψ → ξ/φ) (Sh)

• For F: axioms of E plus

3φ→ (⃝(ψ/φ) → P (ψ/φ)) (D⋆)

• For F+(CM): axioms of F plus

(⃝(ψ/φ) ∧⃝(ξ/φ)) → ⃝(ξ/φ ∧ ψ) (CM)

• For F+(DR): axioms of F plus

⃝ (ξ/φ ∨ ψ) → (⃝(ξ/φ) ∨⃝(ξ/ψ)) (DR)

• For G: axioms of F plus:

(P (ψ/φ) ∧⃝(ψ → ξ/φ)) → ⃝(ξ/φ ∧ ψ) (Sp)

We give an intuitive explanation for these axioms. COK is the conditional analog of
the familiar distribution axiom K. Abs is the absoluteness axiom of Lewis (1973), and
reflects the fact that the ranking is not world-relative. Nec is the dyadic deontic coun-
terpart of the familiar necessitation rule. Ext permits the replacement of necessarily
equivalent formulas in the antecedent of deontic conditionals. Id is the deontic ana-
log of the identity principle. Sh is named after (Shoham, 1988, p. 77), who seems to
have been the first to discuss it. One can see it as the deontic analog of one-half of
the deduction theorem. D⋆ is the conditional analog of the familiar D axiom. In its
equivalent form, 3φ → ¬(⃝(ψ/φ) ∧ ⃝(¬ψ/φ)), this axiom rules out the possibility
of conflicts between obligations arising in a context φ that is possible. CM and DR
correspond to the principle of cautious monotony and disjunctive rationality from the
non-monotonic logic literature −Kraus et al. (1990). CM tells us that complying with
an obligation does not modify the other obligations arising in the same context. DR
tells us that if a disjunction of states of affairs triggers an obligation, then at least
one disjunct triggers this obligation. Due to Spohn (1975), Sp is best explained us-
ing the (more widely known) principle of rational monotony RM from non-monotonic

6S5 is characterized by the rule of necessitation (“If ⊢ A, then ⊢ 2A”), and the K, T and 5 axioms (5 is

3A → 32A).
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logic−see Kraus et al. (1990). The two laws are inter-derivable in E. RM is obtained
by replacing, in Sp, ⃝(ψ → ξ/φ) with ⃝(ξ/φ), to read:

(P (ψ/φ) ∧⃝(ξ/φ)) → ⃝(ξ/φ ∧ ψ) (RM)

RM says that realizing a permission does not modify our other obligations arising in
the same context.

We give below the main soundness and completeness theorems. Those stated in
Th. 2.1 hold under both the opt rule and the max rule. It is understood that limitedness
is cast in terms of opt when the opt rule is applied, and in terms of max when the
max rule is applied. The same holds for smoothness.

Theorem 2.1 (Soundness and completeness, Parent (2021; 2024)). (i) E is sound
and complete w.r.t. the class of all preference models; (ii) F is sound and complete
w.r.t. the class of preference models in which ⪰ is limited; (iii) F+CM is sound and
complete w.r.t. the class of preference models in which ⪰ is smooth; (iv) F+DR is
(weakly) sound and complete w.r.t. the class of (finite) preference models in which ⪰
meets the interval order condition.

In part (i), (ii) and (iii) of Th. 2.1, and in Th. 2.2, soundness and completeness are
taken in their strong sense. They establish a correspondence between the syntactic
and semantic consequence relation while also accommodating a potentially infinite
set of assumptions. To be more precise, the theorems are of the form: where Γ is a
set of formulas or assumptions, Γ ⊢ φ if and only if Γ |= φ. In part (iv) of Th. 2.1,
soundness and completeness are taken in their weak sense: Γ is required to be finite; this
amounts to establishing a match between theorems and validities only. This restriction
is because the completeness proof appeals in an essential way to the assumption that
models are finite−for more details, see (Parent, 2024, §4).

Theorem 2.2 (Soundness and completeness, Parent (2014)). (i) Under the opt rule
G is sound and complete w.r.t. the class of preference models in which ⪰ is limited
and transitive; (ii) under the max rule, G is sound and complete w.r.t. the class of
preference models in which ⪰ is limited, transitive and total.

For more background on these systems, and additional results, we refer the reader
to Parent (2021; 2024).

2.4. Correspondences

Table 1 shows some of the known “correspondences” between semantic properties and
formulas as extracted from Th. 2.1 and Th. 2.2. Thus, the term “correspondence”
is understood along the lines suggested by Hughes and Cresswell (Cf. Section 1).
The leftmost column shows the properties of ⪰. The two middle columns show the
corresponding modal axioms, the first column for the max rule, and the second one for
the opt rule. It is understood that smoothness (resp. limitedness) is defined for max
in the max column, and for opt in the opt column. The rightmost column gives the
paper where the completeness theorem is established. The symbol × indicates that
the property (or pair of properties) is known not to correspond to any axiom, in the
sense that the property does not modify the set of valid formulas.

To improve readability, we have used certain shortcuts, albeit with the potential
drawback of simplifying the data. The lack of correspondence in the 1st, 2nd and 5th
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Property Axiom (max) Axiom (opt) Ref.

reflexivity × × Parent (2015)
totality × × Parent (2015)
limitedness D⋆ D⋆ Parent (2015)
smoothness CM CM Parent (2014)
transitivity × Sp Parent (2014; 2024)
transitivity+ totality Sp × Parent (2014)
interval order DR DR Parent (2024)

Table 1.: Some correspondences

row (starting from the top, going downwards) is for the general case, when no con-
straint is put on ⪰. Thus, assuming one of reflexivity, totality or transitivity (under
the max) does not add new validities. Similarly, the correspondence for limitedness
is independent of any other properties (or axioms) in the background. The corre-
spondence results for smoothness, transitivity (under the opt), transitivity+totality
(under the max) and interval order assume D⋆ and limitedness in the background.
Quasi-transitivity, Suzumura consistency and acyclicity are known not to correspond
to any formula in the general case, under the max rule−Parent (2024). This holds
whether or not limitedness or smoothness is assumed in the background. However, it
is not known what happens under the opt rule. Therefore, we have put these three
conditions aside.

3. System E in Isabelle/HOL

Our modelling of System E in Isabelle/HOL reuses and adapts prior work (Benzmüller
et al., 2019) and it instantiates and applies the LogiKEy methodology (Benzmüller
et al., 2020), which supports plurality at different modelling layers.

3.1. LogiKEy

Classical higher-order logic (HOL) is fixed in the LogiKEy methodology and infras-
tructure (Benzmüller et al., 2020) as a universal meta-logic (Benzmüller, 2019) at the
base layer (L0), on top of which a plurality of (combinations of) object logics can
become encoded (layer L1). In the case of this paper, we encode extensions of System
E at layer L1 in order to assess them. Employing these object logics notions of layer
L1 we can then articulate a variety of logic-based domain-specific languages, theo-
ries and ontologies at the next layer (L2), thus enabling the modelling and automated
assessment of different application scenarios (layer L3). Note that the assessment stud-
ies conducted in this paper at layer L3 do not require any further knowledge to be
provided at layer L2; hence layer L2 modellings do not play a role in this paper.

LogiKEy significantly benefits from the availability of theorem provers for HOL,
such as Isabelle/HOL, which internally provides powerful automated reasoning tools
such as Sledgehammer (Blanchette et al., 2013; Blanchette et al., 2016) and Nitpick
(Blanchette and Nipkow, 2010). The automated theorem proving systems integrated
via Sledgehammer include higher-order ATP systems, first-order ATP systems, and
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Figure 3.: Basic semantical ingredients; propositional and modal connectives
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Figure 4.: Truth conditions

SMT (satisfiability modulo theories) solvers, and many of these systems in turn use
efficient SAT solver technology internally. Proof automation with Sledgehammer and
(counter-)model finding with Nitpick were invaluable in supporting our exploratory
modeling approach. These tools were very responsive in automatically proving (Sledge-
hammer), disproving (Nitpick), or showing consistency by providing a model (Nitpick).
In this section and subsequent ones, we highlight some explicit use cases of Sledgeham-
mer and Nitpick. They have been similarly applied at all levels as mentioned before.

3.2. Faithful embedding of system E

In the work of Benzmüller et al. (2019), it is shown that the embedding of E in
Isabelle/HOL is faithful, in the sense that a formula φ in the language of E is valid
in the class PREF of all preference models if and only if the HOL translation of φ
(notation: ⌊φ⌋) is valid in the class of Henkin models of HOL.

Theorem 3.1 (Faithfulness of the embedding).

|=PREF φ if and only if |=HOL ⌊φ⌋

Remember that the establishment of such a result is our main success criterium at
layer L1 in the LogiKEy methodology.

This first two screenshots show the encoding of E in Isabelle/HOL. Fig. 3 shows
the basic ingredients in the preference model, and describes how the propositional and
alethic modal connectives are handled. The betterness relation⪰ is encoded as a binary

11



relational constant r (l. 32). In Fig. 4, the notions of optimality and maximality are
encoded. Different pairs of modal operators (obligation, permission) are introduced to
distinguish between the two types of truth conditions. The model finder Nitpick is able
to verify the consistency of the formalization (l. 55) and to verify the non-equivalence
between the two types of truth conditions (l. 61). Sledgehammer is able to show the
validity of all the axioms of E. This is shown in Fig. 5 for the max rule. It takes only
a few ms for some provers to prove a formula. For instance cvc4 shows Abs in 1ms,
and Sh in 10 ms.

Figure 5.: Axioms of E (max)

3.3. Properties

The encoding of the properties of the betterness relation are shown in Figs. 6 and 7.
On l. 99-104 of Fig. 6, one sees the different versions of Lewis’ limit assumption. The
property in Fig. 7 is the interval order condition. This one is usually described as the
combination of totality with the Ferrers condition encoded in l. 146. Sledgehammer
confirms a fact often overlooked in the literature, that totality can be replaced by
the simpler condition of reflexivity (l. 149-152). The other candidate weakenings of
transitivity discussed earlier are also encoded in the theory file. For simplicity’s sake,
we only give the example of quasi-transitivity and acyclicity. The encoding of the
second is shown in Fig. 8. In Isabelle/HOL, the transitive closure of a relation can be
defined in a few lines, shown in Fig. 9. The encoding of quasi-transitivity is shown in
Fig. 10.

4. Verifying the correspondences

In this section, the correspondences for the axioms are investigated. The task is to
automatically verify that a given property is sufficient for the validation of the corre-
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Figure 6.: Standard properties

Figure 7.: Interval order

sponding axiom as per Table 1. We begin by assuming that the truth conditions for the
obligation operator are given in terms of maximality, go on to consider the case where
they are given in terms of optimality, and finally extend the scope of our inquiry to a
well-known variant evaluation rule for the conditional due to Lewis (1973). The three
evaluation rules collapse only in the presence of all the properties of the betterness
relation, including limitedness (which famously Lewis rejected). The consideration of
Lewis’s evaluation rule will also be needed for the case study in Section 5.

4.1. Max rule

Here we check known correspondences for the max rule. Sledgehammer and Nitpick
confirm that an axiom is not valid unless the matching property is assumed:

• If the relevant property is not assumed, counter-models for the corresponding
axiom (D⋆, CM, DR and Sp) are found by Nitpick. This is Figs. 11, 13 and 14;

• If the property is assumed, then the corresponding axiom is proved by Sledge-
hammer. Fig. 12 shows it for limitedness and smoothness, Fig. 13 for the interval
order condition, and Fig. 14 for the combination of transitivity and totality.

The implications having the form “property ⇒ axiom” are all verified. However, the
converse implications are all falsified by Nitpick. We will come back to this point later
on.
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Figure 8.: Acyclicity

Figure 9.: Transitive closure

4.2. Opt rule

The outcome of our experiment is the same as for the max rule except for one small
change. Transitivity no longer needs totality to validate Sp. This one only needs tran-
sitivity. Besides, the assumption of transitivity of the betterness relation gives us a
principle of transitivity for a weak preference operator over formulas, defined by φ ≥ ψ
iff P (φ/φ∨ψ). This is shown in Fig. 16. Again the converse implication is falsified by
Nitpick (l. 356-361).

4.3. Inclusion

In the work of Benzmüller et al. (2015), proper inclusion between systems in the modal
cube are verified by looking at the model constraints of their respective axiomatiza-
tions. Because of the lack of full equivalence between modal axiom and property of
the relation, we cannot do the same, at least not yet. Nor can we show equivalence
between systems when restraining the number of worlds.
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Figure 10.: Quasi-transitivity

Figure 11.: D⋆, CM and DR invalid in general

4.4. The ∃∀ truth conditions (Lewis)

We extend the scope of our inquiry to other truth conditions for the conditional. Here
we consider the variant rule proposed by Lewis (1973). In order to avoid any commit-
ment to the limit assumption, he suggests that ⃝(ψ/φ) should be true whenever there
is no φ-world or there is a φ ∧ ψ-world which starts a (possibly infinite) sequence of
increasingly better φ→ ψ-worlds, in which the obligation is never violated. Formally:

a ⊨ ⃝(ψ/φ) iff ¬∃b (b |= φ) or

∃b (b |= φ ∧ ψ & ∀c (c ⪰ b⇒ c |= φ→ ψ))
(∃∀)

We shall refer to the statement appearing at the right-hand-side of “iff” as the ∃∀ rule.
The encoding is shown in Fig.17.

Isabelle/HOL can verify in what sense the standard account in terms of best requires
the limit assumption. The law “from 3φ, ⃝(ψ/φ) and ⃝(¬ψ/φ) infer ⃝(χ/φ)” is
valid. This is known as the principle of “deontic explosion”, often called DEX. It says
that in the presence of a conflict of duties (unless it is triggered by an “inconsistent”
state of affairs) everything becomes obligatory. This has led most authors to make the
limitedness assumption in order to validate D*, and hence make DEX harmless: the
set {3φ,⃝(ψ/φ),⃝(¬ψ/φ)} is not satisfiable. This is shown in Fig. 18. On l. 394, the
validity of DEX is established under the max rule. On l. 398, DEX is falsified under
the ∃∀ rule.

Isabelle/HOL is also able to verify that when all the standard properties of the
betterness relation are assumed, then the three evaluation rules collapse. This is shown
in Fig. 18 too. T18 shows the equivalence between the ∃∀ rule and the opt rule, and
T19 shows the equivalence between the ∃∀ rule and the max rule.

Questions of correspondence between properties and modal axioms are still under
investigation. There are two extra complications. First, a completeness result is avail-
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Figure 12.: Limit assumption

Figure 13.: Interval order

able for the strongest system G only: it is complete with respect to the class of models
in which ⪰ is transitive and total (and hence reflexive). Second, only two properties
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Figure 14.: Transitivity and totality (max)

Figure 15.: Transitivity and totality (max, cont.)

seem to have an import, but the matching between them and the axioms is not one-
to-one: one property validates more than one axiom, sometimes in combination with
the other property. This is shown in Table 2. The left column gives the axiom. The
right column shows the property (or pair of properties) required to validate this one.

Axiom of G Property (or pair of properties) of ⪰
(D⋆) totality
(Sp) transitivity
(COK) transitivity and totality
(CM) transitivity and totality

Table 2.: Axioms and properties under the ∃∀ rule−from Parent (2021)

In Fig. 19, Sledgehammer shows the validity of the axioms of E holding indepen-
dently of the properties assumed of the betterness relation. In Figs. 20 and 21, Sledge-
hammer confirms that the D⋆ axiom and the Sp axiom call for totality and transitivity,
respectively. Similarly, Fig. 22 shows that COK and CM call for both transitivity and
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Figure 16.: Transitivity (opt)

Figure 17.: ∃∀ rule

totality. In all these cases, Sledgehammer fails to show the converse implications.

4.5. Assessment

As mentioned in Sect. 3.1, we found that the tools are very responsive in automatically
proving (Sledgehammer), disproving (Nitpick), or showing consistency by providing a
model (Nitpick). Not only an answer is returned, but also a justification for this answer.
However, concerning this, we found that Nitpick fares better than Sledgehammer.
When Sledgehammer has proved a theorem successfully, the list of the definitions,
axioms and lemmas to be used is returned. But the derivation itself is not given.7

In principle one could look into the detailed proof output file of the external provers
called by Sledgehammer, but this requires technical expertise. A simple example is
given in Fig. 23. Line 161 tells us that quasi-transitivity follows from transitivity by
assumption (“assms”) and using the definition of an asymmetric factor (“assfactor”).
This is indeed how this would be shown by hand. However, a detailed argument is
not given. By contrast, Nitpick always gives the full details of the model justifying
its answer, and this one was always correct in our experiments. An example of such a
model is given in Fig. 24, which we will discuss in a moment.

A comparative study with native provers, similar to the one in Steen et al. (2023),
must be left as a topic for future work. We are not aware of a similar automation of

7We tried to use Isar style reconstruction of proofs with Sledgehammer, but without much success for our

examples.
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Figure 18.: Deontic explosion (DEX)

Figure 19.: Axioms independent of the properties (∃∀ rule)

the systems studied in this paper using other methods.8 A comparison with a prover
for a related system (e.g. KLMLean 2.0, due to Giordano et al. (2007)) would already
be beneficial.

The entire Isabelle document (“DDLcube.thy”) is verified by Isabelle2023 in 1m50s
on an Apple M1 with 8 GB of memory. During this time, Isabelle/HOL solves 82
problems, whereby demonstrating good responsiveness. It takes 15s for Nitpick to find
40 (counter-)models, and 1m35s for Sledgehammer to show the validity of 34 formulas
and verify 6 implication relations between properties of the betterness relation. Ad-
ditionally, we consistently observe accurate proofs and models, contrasting with the
inherently error-prone nature of the traditional pen-and-paper method. The assurance
of accuracy is an added benefit of the known faithfulness of the embedding, Th. 3.1,
a distinctive hallmark of the method.

We end with a critical assessment of the findings on correspondence. The situation
for conditional (deontic) logic is still slightly different from the one for traditional

8The hyper-sequent system for E defined in Ciabattoni et al. (2022) comes with a method for extracting a
counter-model from a failed proof search. It holds the promise to provide a theorem prover against which we

could evaluate the one described in this paper.
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Figure 20.: Totality alone (∃∀ rule)

Figure 21.: Transitivity alone (∃∀ rule, ct’d)

modal logic. In the latter setting, the full equivalence between the property of the
relation and the modal formula is verified by automated means. In the former setting
only the direction “property ⇒ axiom” is verified by automated means. To be more
precise, what is verified is the fact that, if the property holds, then the axiom holds.
What is not confirmed is the converse statement, that if the axiom holds then the
property holds. This asymmetry deserves to be discussed.

First, it is usual to distinguish between validity on a frame and validity in a model
based on a frame. A frame is a pair F = (W,R), with W a set of worlds and R the
accessibility relation. A model based on F = (W,R) is the triplet M = (W,R, v)
obtained by adding a specific valuation v, or a specific assignment of truth-values to
atomic formulas at worlds. For a formula to be valid on a frame F , it must be valid
in all models based on F . In other words, it must be true for every assignment to the
atomic formulas. We have worked at the level of models. But in so-called correspon-
dence theory à la Salqhvist-van Benthem, the link between formulas and properties is
in general studied at the level of frames themselves. One shows that F meets a given
condition iff formula A is valid on F . In a recent extension of the semantical embed-
ding approach for public announcement logic PAL, cf. Benzmüller and Reiche (2022),
an explicit dependency on the concrete evaluation domain has been modeled. The
question as to whether this idea can be extended to support a notion of frame-validity
is a topic for future research.

Second, the most we got is that a given property is a sufficient condition for the
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Figure 22.: Transitivity and totality together (∃∀ rule)

Figure 23.: Proving quasi-transitivity

validity of the axiom, but not a necessary one. For instance, to disprove the implication
“CM ⇒ m-smoothness” under the max rule (Fig. 12), Nitpick exhibits a model in
which CM holds and m-smoothness is falsified. This model is shown in Fig. 24. The
corresponding preferential model is also shown below. Smoothness is falsified, because
it contains an infinite loop of strict betterness, making the smoothness condition fail
for, e.g., φ ∨ ¬φ. But CM (vacuously) holds, because the two conjuncts appearing in
the antecedent of the axiom are both false. Indeed, i3 is a maximal φ-world, and it
falsifies ψ and χ. This shows that m-smoothness is not a necessary condition for the
axiom to hold.

It is interesting to remark that Nitpick always presents a finite standard model. We
leave it as a topic for future research to investigate if the crucial distinction between
standard and non-standard models for HOL which, according to Andrews (2002),
sheds so much light on the mysteries associated with the incompleteness theorems,
has a bearing on the issue at hand.

Another open problem concerns the possibility of verifying “negative” results. As
shown in Table 1, under the max rule transitivity alone does not correspond to any

(a) Model for HOL
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(b) Preferential model. An arrow from i1 to i2
means i1 ⪰ i2. No arrow from i2 to i1 means
i2 ̸⪰ i1

Figure 24.: A non-smooth model validating CM (max)
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axiom. Also under both the max rule and the opt rule neither reflexivity nor totality
correspond to an axiom. Finally, under the ∃∀ rule the limit assumption has no impact.
All this has been established with pen and paper. It would be worth exploring the
question as to whether and how this problem could be tackled in Isabelle/HOL.

5. Case study: Parfit’s repugnant conclusion

In this section,9 we show how to employ the framework described in the previous
sections for the computer-aided assessment of ethical arguments in philosophy. Our
focus is on analyzing the repugnant conclusion as discussed by Parfit (1984). We
provide a computer encoding of his argument for the repugnant conclusion to make it
amenable to formal analysis and computer-assisted experiments. Through the use of
Isabelle/HOL, we discuss the plausibility of a solution of the paradox, advocated by
Temkin (1987) and others. It involves rejecting the assumption of transitivity of “better
than”. To put the proposed solution to the test, a full-blooded logical characterization
of “better than” is needed. This one is given by the framework described in the previous
sections. Following the tradition in deontic and conditional logic (refer to, for example,
Lewis (1973)), we make a distinction between “better than” as a relation on formulas
and as a relation on possible worlds, with the latter being instrumental in defining the
logic of the former.

This section is organized into three subsections. Subsection 5.1 describes Parfit’s
argument for the repugnant conclusion. For readability’s sake, we focus on a simplified
version of the paradox, called the mere addition paradox. Subsection 5.2 documents
the experiments we have run. Subsection 5.3 summarizes our findings.

5.1. The paradox

The repugnant conclusion reads:

“For any possible population of at least ten billion people, all with a very high quality
of life, there must be some much larger imaginable population whose existence, if other
things are equal, would be better even though its members have lives that are barely
worth living.” (Parfit, 1984, Ch. 6)

The target is “total utilitarianism”, according to which the best outcome is given by
the total of well-being in it. This view implies that any loss in the quality of lives
in a population can be compensated for by a sufficient gain in the quantity of a
population. Fig. 25 illustrates the repugnant conclusion. The blocks correspond to two
populations, A and Z. The width of each block represents the number of people in
the corresponding population, the height represents their quality of life. All the lives
in the above diagram have lives worth living. People’s quality of life is much lower in
Z than in A but, since there are many more people in Z, there is a greater quantity
of welfare in Z as compared to A. Consequently, although the people in A lead very
good lives and the people in Z have lives only barely worth living, Z is nevertheless
better than A according to classical utilitarianism.

9The code snippets are taken from the companion theory files “mere addition opt.thy”,

“mere addition max.thy” and “mere addition lewis.thy”.
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A

Very high quality in life

Z

Very low but positive quality in life
Z has a lot more people

Figure 25.: Repugnant conclusion

It has been argued by e.g. Temkin (1987) that the repugnant conclusion can be blocked,
by just dropping the assumption of the transitivity of “better than”. This is best ex-
plained by considering a smaller version of the paradox, called the mere addition para-
dox. The repugnant conclusion is generated by iteration of the reasoning underlying
the mere addition paradox.

The mere addition paradox is shown in Fig. 26. In population A, everybody enjoys
a very high quality of life. In population A+ there is one group of people as large as the
group in A and with the same high quality of life. But A+ also contains a number of
people with a somewhat lower quality of life. In Parfit’s terminology A+ is generated
from A by “mere addition”. Population B has the same number of people as A+, their
lives are worth living and at an average welfare level slightly above the average in A+,
but lower than the average in A. The link with the repugnant conclusion is that by
reiterating this structure (scenario B+ and C, C+ etc.), we end up with a population
Z in which all lives have a very low positive welfare.

A A
+

B

+ people

average in A+

Figure 26.: Mere addition paradox

The following statements are all plausible:

(P0) A is strictly better than B: A > B. Otherwise, in the original scenario, by parity
of reasoning or consistency (scenario B+ and C, C+, ...) one would have to deny
that A is better than Z.

(P1) A+ is at least as good as A: A+ ≥ A. Justification: A+ is not worse than (and
hence at least as good as) A; the addition of lives worth living (the + people)
cannot make a population worse.

(P2) B is strictly better than A+: B > A+. Justification: A+ and B have the same
size; the average welfare level in B is slightly above the average in A+, and the
distribution is uniform across members. So B is better in regard to both average
welfare (and thus also total welfare) and equality.

The relations ≥ and > appearing in (P0)-(P2) apply to propositional formulas. It
is usual to take φ ≥ ψ as a shorthand of P (φ/φ ∨ ψ), and φ > ψ as a shorthand of
φ ≥ ψ and ψ ̸≥ φ. (Cf. Lewis (1973)). This is shown in Table 3.
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Definiendum Definiens Reading
φ ≥ ψ P (φ/φ ∨ ψ) φ permitted, if φ ∨ ψ
φ > ψ P (φ/φ ∨ ψ)∧ ⃝(¬ψ/φ ∨ ψ) φ permitted and ψ forbidden, if φ ∨ ψ

Table 3.: Preference on formulas

Fig. 27 shows the encoding of P0-P2 in terms of obligation, an obligation statement
being evaluated using the opt rule:

Figure 27.: Encoding of the mere addition scenario (optimality)

Figure 28.: Sample queries on (P0)-(P2)

5.2. Computer-assisted experiments

Fig. 28 shows some sample queries run on the scenario under the opt rule. On l. 26, the
assumption of the transitivity of the betterness relation (on possible worlds) is intro-
duced. Sledgehammer shows the inconsistency of (P0)-(P2). On l. 35, the assumption
of transitivity is dropped. Nitpick confirms the satisfiability of (P0)-(P2). The model
generated by Nitpick is shown in Fig. 29.
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Figure 29.: A non-transitive model satisfying (P0)-(P2)

Figure 30.: A-cyclicity and quasi-transitivity

Figure 31.: Interval order

Nitpick can also confirm that the mere addition paradox is avoided if transitivity is
not rejected wholesale, but weakened into a-cyclicity or quasi-transitivity. This point
has in general been overlooked in the literature. On the other hand, Sledgehammer
can verify that this solution does not work for the interval order condition, which
represents another candidate weakening of transitivity. The verifications are shown in
Figs. 30 and 31.

We run the same queries under the max rule and the ∃∀ rule. The findings are sum-
marized in Table 4. The left-most column shows the constraint put on the betterness
relation. The other columns show what happens when varying the truth conditions for
the conditional obligation operator. The symbol ✓ indicates that the sentences formal-
izing the scenario have been confirmed to be consistent, and the symbol ✘ indicates
they have been confirmed to be inconsistent.
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Property
Truth conditions

Opt Max ∃∀
None ✓ ✓ ✓

Transitivity + totality ✘ ✘ ✘
Transitivity ✘ ✘ (if model finite) ✘
Interval order ✘ ✘ ✘

Quasi-transitivity ✓ ✘ (if model finite) ✓
Acyclicity ✓ ✓ ✓

Table 4.: Mere addition paradox (overview of findings)

We verified manually the counter-models found by Nitpick, and all appeared to be
correct. One can see that changing the truth conditions for the conditional does not
have any effect, except for transitivity and quasi-transitivity under the max rule. A
few comments are in order.

The formulas involved in the scenario are labeled as PP0-PP2. First of all, Sledge-
hammer shows that, if ⪰ is transitive and total, then PP0-PP2 are inconsistent. This
is shown in Fig. 32. This is to be contrasted with the situation under the opt rule and
the ∃∀ rule. But this apparent asymmetry has an explanation. When Temkin refers
to the betterness relation, he has mostly in mind the relation ≥ (on formulas). He
does not disentangle the relation ≥ (on formulas) from the relation ⪰ (on worlds), the
latter being used to define the truth conditions of the former. Nor does he specify if
“best” is to be understood in terms of maximality or optimality. The properties of ⪰
and ≥ may not coincide depending on the definition of “best”. Thus, under the opt
rule, if ⪰ is transitive, then ≥ is transitive −see T16 in Fig. 16. Under the max rule,
it is only if ⪰ is both transitive and total that ≥ is transitive−see T12 in Fig. 15.10

Figure 32.: Inconsistency under transitivity and totality

However, this does not explain everything. The above might suggest an alternative
solution to the mere addition paradox. Perhaps one could just keep the transitivity
of ⪰ but reject the totality of ⪰, while concurrently defining “best” in terms of max-
imality. This would be in keeping with the conventional approach in rational choice
theory: maximality is often deemed more suitable than optimality, because it keeps the
possibility of incomparability open−Sen (1997). But what happens with transitivity
or quasi-transitivity of ⪰ alone (third and fifth row, starting from the top) suggests
that the solution lies elsewhere. Sledgehammer shows that, given (quasi-)transitivity,
the formulas PP0-PP2 are inconsistent, assuming a finite model of cardinality (up to)
seven (if we provide the exact dependencies). This is shown in Fig. 33.11

Thus, under the max rule, (quasi-)transitivity makes PP0-PP2 inconsistent if the
set of possible worlds is assumed to be finite−an assumption that might appear overly

10A pen and paper verification may be found in (Parent, 2021, Obs. 2.11 and 2.12).
11For higher cardinalities Sledgehammer and Nitpick return a timeout. Timeouts can be explicitly specified

by a parameter, like [timeout=100]; the default is 60s.
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Figure 33.: Inconsistency under (quasi-)transitivity and finiteness

limiting, if not arbitrary. This observation calls into question the idea that transitivity
is the sole cause of the paradox.

The above fact has remained unnoticed until now. We have not been able to establish
it in full generality (i.e., regardless of the model’s fixed cardinality) without resorting
to manual calculations. This is Proposition 5.1 below. It says that, in the presence of
(quasi-)transitivity, a necessary condition for PP0-PP2 to be simultaneously satisfi-
able, is that the model contains an infinite increasing ≻-chain of ¬A∧¬A+∧B-worlds
(all distinct).

Proposition 5.1. Suppose ⪰ is quasi-transitive (resp. transitive). Assume the follow-
ing formulas are satisfied in a world in a model M = (W,⪰, v):

P (A/A ∨B) (2)

P (A+/A ∨A+) (3)

⃝ (¬A+/A+∨B) (4)

⃝ (¬B/A ∨B) (5)

P (B/A+ ∨B) (6)

Then W contains an infinite increasing ≻-chain of ¬A∧¬A+∧B-worlds (all distinct).

Proof. I focus on the case where ⪰ is quasi-transitive. Recall that by definition ≻
is irreflexive and asymmetric, and that quasi-transitivity entails acyclicity (see Fig.
1). Assume that formulas (3)-(4)-(5) are satisfied; the argument primarily revolves
around these. Equations (2) and (6) can also be assumed true without leading to a
contradiction.

By (3), there is some a1 such that a1 ∈ max(A ∨ A+) and a1 |= A+. Hence, a1 |=
A+∨ B. By (4), a1 ̸∈ max(A+∨ B), so there is some a2 ≻ a1 s.t. a2 |= A+ ∨ B. By
irreflexivity, a1 and a2 are distinct. Clearly, a2 |= ¬A ∧ ¬A+. So a2 |= B, and hence
by (5), a2 ̸∈ max(A ∨ B). It follows that there is some a3 ≻ a2 s.t. a3 |= A ∨ B. By
irreflexivity and asymmetry, a3 is other than a2 and a1. By quasi-transitivity, a3 ≻ a1.
Since a1 ∈ max(A ∨ A+), a3 |= ¬A ∧ ¬A+. Hence a3 |= B, and hence by (5) again,
a3 ̸∈ max(A ∨B), and so there is some a4 s.t. a4 |= A ∨B and a4 ≻ a3. By acyclicity,
a4 is other than a1, a2, a3 and a4. By quasi-transitivity, a4 ≻ a1, and so as before
a4 |= ¬A ∧ ¬A+. Reiterating the above argument indefinitely, one gets an infinite
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increasing ≻-chain of ¬A ∧ ¬A+∧B-worlds, starting with a2.
The argument goes through if ⪰ is required to be transitive. This is because tran-

sitivity implies quasi-transitivity (see Fig. 1).

Remark 1. Note that Prop. 5.1 does not apply to to the interval order condition (even
if this one implies quasi-transitivity as well). This is because (6) cannot simultaneously
hold in a model where the interval order condition is satisfied. This can easily be
verified. By (6), there is some b1 ∈ max(A+∨B) with b1 |= B. By (5), b1 ̸∈ max(A∨B).
So there is some b2 ≻ b1 with b2 |= A ∨ B. Clearly, b2 |= A ∧ ¬B ∧ ¬A+. We have
a1 ̸⪰ a2 and b1 ̸⪰ b2. By Ferrers, a1 ̸⪰ b2 or b1 ̸⪰ a2. By totality, b2 ≻ a1 or a2 ≻ b1.
The first contradicts the fact that a1 ∈ max(A ∨ A+), while the second contradicts
the fact that b1 ∈ max(A+∨ B). This is shown in Fig. 34, where the two cases are
indicated by a “or”.
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<latexit sha1_base64="LabMmaqhz3hevyj1IIPHVK4zJmU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EooVFwMYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6SHoe/1yxa26c5BV4uWkAjka/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5qVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nfZMAVMiMmllCmuL2VsBFVlBmbTsmG4C2/vEpaF1WvVq3dX1bqN3kcRTiBUzgHD66gDnfQgCYwGMIzvMKbI5wX5935WLQWnHzmGP7A+fwB6+GNjw==</latexit>

b1

<latexit sha1_base64="jgcvz41788TEa3rolSI/iqeggwY=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl2QaGERsLGMaD4gOcLeZi5Zsrd37O4J4chPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0gE18Z1v5219Y3Nre3CTnF3b//gsHR03NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbmt59QaR7LRzNJ0I/oUPKQM2qs9BD0q/1S2a24c5BV4uWkDDka/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5qVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nfZMAVMiMmllCmuL2VsBFVlBmbTtGG4C2/vEpa1YpXq9TuL8v1mzyOApzCGVyAB1dQhztoQBMYDOEZXuHNEc6L8+58LFrXnHzmBP7A+fwB7WWNkA==</latexit>

b2

<latexit sha1_base64="5907nbgYQk22ZYoYpZ+lMoWSvTQ=">AAAB+3icbVDLSgNBEJz1GeNrjUcvg0GICGFXJHrwEPXiMYJ5QHYNs5NOMmT2wcxsSFj2V7x4UMSrP+LNv3GS7EETCxqKqm66u7yIM6ks69tYWV1b39jMbeW3d3b39s2DQkOGsaBQpyEPRcsjEjgLoK6Y4tCKBBDf49D0hndTvzkCIVkYPKpJBK5P+gHrMUqUljpmwfHJGJdunpKz1BkB4NvTjlm0ytYMeJnYGSmiDLWO+eV0Qxr7ECjKiZRt24qUmxChGOWQ5p1YQkTokPShrWlAfJBuMrs9xSda6eJeKHQFCs/U3xMJ8aWc+J7u9IkayEVvKv7ntWPVu3ITFkSxgoDOF/VijlWIp0HgLhNAFZ9oQqhg+lZMB0QQqnRceR2CvfjyMmmcl+1KufJwUaxeZ3Hk0BE6RiVko0tURfeohuqIojF6Rq/ozUiNF+Pd+Ji3rhjZzCH6A+PzBybWkzc=</latexit>

max(A+ _ B)

<latexit sha1_base64="6mseQ1cYauwC7TSr0Gb5Mq83bdg=">AAAB+3icbVDLSgNBEJz1GeNrjUcvg0GICGFXJHrwkODFYwTzgOwaZie9yZDZBzOzIWHJr3jxoIhXf8Sbf+Mk2YMmFjQUVd10d3kxZ1JZ1rextr6xubWd28nv7u0fHJpHhaaMEkGhQSMeibZHJHAWQkMxxaEdCyCBx6HlDe9mfmsEQrIofFSTGNyA9EPmM0qUlrpmwQnIGJdqzggA157Si+l51yxaZWsOvErsjBRRhnrX/HJ6EU0CCBXlRMqObcXKTYlQjHKY5p1EQkzokPSho2lIApBuOr99is+00sN+JHSFCs/V3xMpCaScBJ7uDIgayGVvJv7ndRLl37gpC+NEQUgXi/yEYxXhWRC4xwRQxSeaECqYvhXTARGEKh1XXodgL7+8SpqXZbtSrjxcFau3WRw5dIJOUQnZ6BpV0T2qowaiaIye0St6M6bGi/FufCxa14xs5hj9gfH5AyQ/kzY=</latexit>

max(A _ A+)
<latexit sha1_base64="IP/eCBhweCRysj40Rmoc3tFgdsU=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EooVF0MYyAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0d3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7bK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZa9SrtQvS9WbLI48nMApnIMHV1CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCWJYzL</latexit>

B

<latexit sha1_base64="IP/eCBhweCRysj40Rmoc3tFgdsU=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EooVF0MYyAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0d3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7bK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZa9SrtQvS9WbLI48nMApnIMHV1CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCWJYzL</latexit>

B

<latexit sha1_base64="IP/eCBhweCRysj40Rmoc3tFgdsU=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EooVF0MYyAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0d3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7bK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZa9SrtQvS9WbLI48nMApnIMHV1CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCWJYzL</latexit>

B

<latexit sha1_base64="m6kQiffYhFWMimjK7Un/XDbZOtg=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswp1ItLCI2lhGMB+QHGFvM0mW7O2du3uBcORP2FgoYuvfsfPfuEmu0MQHA4/3ZpiZF8SCa+O6387K6tr6xmZuK7+9s7u3Xzg4rOsoUQxrLBKRagZUo+ASa4Ybgc1YIQ0DgY1geDf1GyNUmkfy0Yxj9EPal7zHGTVWat6Q9giR3HYKRbfkzkCWiZeRImSodgpf7W7EkhClYYJq3fLc2PgpVYYzgZN8O9EYUzakfWxZKmmI2k9n907IqVW6pBcpW9KQmfp7IqWh1uMwsJ0hNQO96E3F/7xWYnpXfsplnBiUbL6olwhiIjJ9nnS5QmbE2BLKFLe3EjagijJjI8rbELzFl5dJ/bzklUvlh4ti5TqLIwfHcAJn4MElVOAeqlADBgKe4RXenCfnxXl3PuatK042cwR/4Hz+ANT/jy4=</latexit>

A _ B

<latexit sha1_base64="VYGGXw3SJBLVGhSKKph091nVQuA=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKRA8eIl48RjAPTNYwO+kkQ2Znl5lZISz5Cy8eFPHq33jzb5wke9DEgoaiqpvuriAWXBvX/XaWlldW19ZzG/nNre2d3cLefl1HiWJYY5GIVDOgGgWXWDPcCGzGCmkYCGwEw5uJ33hCpXkk780oRj+kfcl7nFFjpYe2xD65fkxPx51C0S25U5BF4mWkCBmqncJXuxuxJERpmKBatzw3Nn5KleFM4DjfTjTGlA1pH1uWShqi9tPpxWNybJUu6UXKljRkqv6eSGmo9SgMbGdIzUDPexPxP6+VmN6ln3IZJwYlmy3qJYKYiEzeJ12ukBkxsoQyxe2thA2ooszYkPI2BG/+5UVSPyt55VL57rxYucriyMEhHMEJeHABFbiFKtSAgYRneIU3RzsvzrvzMWtdcrKZA/gD5/MH0FuQWw==</latexit>

¬A+

<latexit sha1_base64="O/H1BTXbBX1x4karS03zoKmxlEc=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EooVFxMYyAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0d3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7bK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZa9SrtQvS9WbLI48nMApnIMHV1CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCUoYzK</latexit>

A

<latexit sha1_base64="VYGGXw3SJBLVGhSKKph091nVQuA=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKRA8eIl48RjAPTNYwO+kkQ2Znl5lZISz5Cy8eFPHq33jzb5wke9DEgoaiqpvuriAWXBvX/XaWlldW19ZzG/nNre2d3cLefl1HiWJYY5GIVDOgGgWXWDPcCGzGCmkYCGwEw5uJ33hCpXkk780oRj+kfcl7nFFjpYe2xD65fkxPx51C0S25U5BF4mWkCBmqncJXuxuxJERpmKBatzw3Nn5KleFM4DjfTjTGlA1pH1uWShqi9tPpxWNybJUu6UXKljRkqv6eSGmo9SgMbGdIzUDPexPxP6+VmN6ln3IZJwYlmy3qJYKYiEzeJ12ukBkxsoQyxe2thA2ooszYkPI2BG/+5UVSPyt55VL57rxYucriyMEhHMEJeHABFbiFKtSAgYRneIU3RzsvzrvzMWtdcrKZA/gD5/MH0FuQWw==</latexit>

¬A+

<latexit sha1_base64="VYGGXw3SJBLVGhSKKph091nVQuA=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKRA8eIl48RjAPTNYwO+kkQ2Znl5lZISz5Cy8eFPHq33jzb5wke9DEgoaiqpvuriAWXBvX/XaWlldW19ZzG/nNre2d3cLefl1HiWJYY5GIVDOgGgWXWDPcCGzGCmkYCGwEw5uJ33hCpXkk780oRj+kfcl7nFFjpYe2xD65fkxPx51C0S25U5BF4mWkCBmqncJXuxuxJERpmKBatzw3Nn5KleFM4DjfTjTGlA1pH1uWShqi9tPpxWNybJUu6UXKljRkqv6eSGmo9SgMbGdIzUDPexPxP6+VmN6ln3IZJwYlmy3qJYKYiEzeJ12ukBkxsoQyxe2thA2ooszYkPI2BG/+5UVSPyt55VL57rxYucriyMEhHMEJeHABFbiFKtSAgYRneIU3RzsvzrvzMWtdcrKZA/gD5/MH0FuQWw==</latexit>

¬A+

<latexit sha1_base64="xMEyD7V7fD5IOqqGNRoPUEuoRXo=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswp1ItLCI2FhGMB+QHGFvM5es2ds7dveEcOQ/2FgoYuv/sfPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWanYlDshNr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbthJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jrpc4XMiLEllClubyVsSBVlxgZUtCF4iy8vk+Z5xatWqvcX5dp1HkcBjuEEzsCDS6jBHdShAQwe4Rle4c2JnRfn3fmYt644+cwR/IHz+QPqz46y</latexit>¬A

<latexit sha1_base64="xMEyD7V7fD5IOqqGNRoPUEuoRXo=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswp1ItLCI2FhGMB+QHGFvM5es2ds7dveEcOQ/2FgoYuv/sfPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWanYlDshNr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbthJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jrpc4XMiLEllClubyVsSBVlxgZUtCF4iy8vk+Z5xatWqvcX5dp1HkcBjuEEzsCDS6jBHdShAQwe4Rle4c2JnRfn3fmYt644+cwR/IHz+QPqz46y</latexit>¬A

<latexit sha1_base64="CbQNXzvJ/tqICQU89jaJ+IWlrJA=">AAAB6XicbVC7SgNBFL0bXzG+opY2g0GwCrspooVFwMYyinlAsoTZyWwyZB7LzKwQlvyBjYUitv6RnX/jJNlCEw9cOJxzL/feEyWcGev7315hY3Nre6e4W9rbPzg8Kh+ftI1KNaEtorjS3QgbypmkLcssp91EUywiTjvR5Hbud56oNkzJRztNaCjwSLKYEWyd9KD0oFzxq/4CaJ0EOalAjuag/NUfKpIKKi3h2Jhe4Cc2zLC2jHA6K/VTQxNMJnhEe45KLKgJs8WlM3ThlCGKlXYlLVqovycyLIyZish1CmzHZtWbi/95vdTG12HGZJJaKslyUZxyZBWav42GTFNi+dQRTDRztyIyxhoT68IpuRCC1ZfXSbtWDerV+n2t0rjJ4yjCGZzDJQRwBQ24gya0gEAMz/AKb97Ee/HevY9la8HLZ07hD7zPH6vjjXI=</latexit>or

Figure 34.: Adding (6)

The following spin-off result is new to the literature. We recall that the finite model
property (f.m.p.) is said to hold w.r.t. a given class C of models, if any formula φ that
is satisfiable in class C is satisfiable in a finite model in C.

Corollary 5.2 (f.m.p.). Under the max rule, the finite model property fails w.r.t. the
following classes of models whose relation ⪰ meets the property as indicated:

• ⪰ is quasi-transitive
• ⪰ is transitive
• ⪰ is an interval order

Proof. The second and third claims follow from the first, because quasi-transitivity
follows from transitivity, and also from the interval order condition (see Fig. 1). To
prove the first claim, set φ := (3) ∧ (4) ∧ (5), and use Prop. 5.1 above. (The interval
order condition will be met in the described model as long as each world is assumed
to be at least as good as itself.)

In HOL one can define the axiom of infinity (for type i) by the second-order formula:

infinity ≡ ∃M.
(
∃z :: i. ¬(Mz) ∧ (∃G. (∀y :: i. (∃x. (Mx) ∧ (Gx = y))))

)
The definiens says that there is a surjective mapping G from domain i to a proper
subsetM of domain i. Testing whether infinity holds, Nitpick gives us a counter-model
to infinity that is a model of PP0-PP2. If the same query is run under the assumption
of (quasi-)transitivity, we do not get any (finite) counter-model reported anymore.
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Figure 35.: Proving infinity

However the provers are still not strong enough to prove infinity. This is shown in
Fig. 35.

5.3. Summary

Distinguishing between “better than” as a relation between formulas and as a relation
on possible worlds, our formalisation offers two new insights on the scenario. Below,
it is understood that the structural properties are those of the second relation.

• One can choose not to take a stand on the truth conditions for the conditional,
but weaken transitivity rather than reject it wholesale. However, not all potential
weakenings of transitivity prove effective: quasi-transitivity and acyclicity do the
job, but not the interval order condition. This is independent of the choice of
the evaluation rule for the conditional.

• One could adopt the max rule, keep transitivity, and allow for the possibility that
there are infinite sequences of better and better worlds. Ultimately, this solution
is questionable, for the reason explained in Sect. 4.4: the max rule faces a deontic
explosion problem, if infinite chains are allowed. Nevertheless, the availability of
this option is worth a mention.

6. Conclusion

Utilising the LogiKEy methodology and framework we have developed mechanisations
of extensions of Åqvist’s preference-based system E for conditional obligation. We
have illustrated the use of the resulting tool for (i) meta-logical studies and for (ii)
object-level application studies in normative reasoning. Novel contributions, partly
contributed by the automated reasoning tools in Isabelle/HOL, include the automated
verification of the correspondence between semantic properties and modal axioms, and
the formalisation and mechanisation of Parfit’s argument for the repugnant conclusion.
This one reveals the possibility of a take on the scenario usually under-appreciated in
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the literature, which consists in weakening transitivity suitably. Future work includes
the handling of the full equivalence between properties and formulas, the formalisation
of (and comparison with) other solutions to the repugnant conclusion, and the analysis
of other variant paradoxes discussed in the literature.
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