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Abstract. Abstract argumentation is an important research area in AI. It is mainly
about the acceptability of arguments in an argumentation framework. The classi-
cal notion of defense has not fully reflected some useful information implicitly en-
coded by the interaction relation between arguments. In this paper, instead of using
arguments and attacks as first citizens, a novel notion of attack-defense is adopted
as a first citizen, based on which a theory of attack-defense framework and attack-
defense semantics are established, where an attack-defense is a triple (x,y,z), mean-
ing that: an argument x defends an argument z against an attacker y. Attack-defense
semantics can be used not only to identify the impact of arguments in some odd cy-
cles, and remove some “useless” defenses, but also to capture new types of equiv-
alence that cannot be represented by the existing notions of equivalence of argu-
mentation frameworks. In addition, it shows that an attack-defense framework and
attack-defense semantics can represent some knowledge that cannot be represented
in Dung-style argumentation, e.g., some context-sensitive knowledge in a dialogue.
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1. Introduction

In the field of AI, abstract argumentation is mainly about the acceptability of arguments
in an argumentation framework (AF) [9,12]. A set of arguments that is collectively ac-
ceptable according to some criteria is called an extension. There are two basic criteria
for defining all kinds of extensions that are based on the notion of admissible set, called
conflict-freeness and defense. An argument is defended by a set of arguments if every
attacker of this argument is attacked by at least one argument in this set. Obviously, the
notion of defense plays an important role in evaluating the status of arguments. However,
this usage of the classical notion of defense has not fully reflected some useful informa-
tion implicitly encoded by the interaction relation between arguments. The latter can be
used to deal with some important problems in formal argumentation.

The first problem is about the expressivity of Dung-style argumentation. In many
situations, the combination of arguments and attacks to form defenses is contextual and
may not refer to an AF. For instance, in a dialogue, when a proponent says c and an
opponent says b, the proponent uses a as a counterargument. Then, the proponent says
e and the opponent says b again. This time, the proponent uses d as a counterargument,
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rather than a, due to some reason, say, rhetoric. It is interesting to note that such context-
sensitive knowledge cannot be represented by Dung-style argumentation.

The second problem is about the treatment of odd cyles. Intuitively, arguments in
some odd cycles cannot provide suppport for the acceptance of some other arguments.
In F1, argument a is not useful for the acceptance of c, while in F2, argument a makes
all other argument not acceptable. Is it possible to explicitly represent the impact of such
arguments on other arguments, and remove some “useless” impact?

F1 : a��
�� b �� c F2 : a��

�� b �� c �� d

d

��

The third problem is about the equivalence between AFs. Intuitively, some AFs are
equivalent in terms of some interpretations, but cannot be represented by the existing
notions of equivance. Some of AFs are not equivalent but cannot be well captured by the
existing notions of equivance. For instance, F3 and F4 are equivalent w.r.t. the accep-
tance of a and b, in the sense that in both AFs, a is the root reason to accept a, and b is
the root reason to accept b. F5 and F6 are equivalent according to the notion of standard
equivalence, but the reasons for accepting c in the two AFs are different.

F3 : a �� c �� d �� b

��

F4 : a �� b��

f

��

e��

F5 : a �� b �� c F6 : a �� b c

To address the above problems, instead of using arguments and attacks as first citi-
zens, we adopt a novel notion of attack-defense as a first citizen and establish a theory of
an attack-defense framework and attack-defense semantics, where an attack-defense is a
triple (x,y,z), meaning that: argument x defends argument z against attacker y. Since a
successful attack-defense contains not only accepted arguments but also the information
about why arguments are accepted, an attack-defense extension contains more informa-
tion than that of the corresponding argument extension.

The structure of this paper is as follows. In Section 2, we define an attack-defense
framework and attack-defense semantics. In Section 3, we formulate some important
properties of attack-defense semantics. In Section 4, we study attack-defense equiva-
lence. In Section 5, attack-defense semantics in Dung-style argumentation is presented.
In section 6, we conclude the paper. Due to space limit, we omit all proofs in this paper.
Please refer to the following link 2 for details.

2. Attack-defense framework and attack-defense semantics

In this section, we introduce notions of attack-defense framework and attack-defense
semantics. An attack-defense is a triple (x,y,z), in which x, y and z are arguments. To
generalize the notion of attack-defense such that every argument has at least one attack-
defense, we introduce two special arguments, denoted � and ⊥ (slightly abusing nota-
tions), indicating that they are always accepted and rejected, respectively. So, in (x,y,z),

2https://github.com/CYLsylvia/ZLARE/blob/main/Appendix.pdf
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z is an argument other than � and ⊥. Given that z is not ⊥, y cannot be �. Otherwise, z
is ⊥. By (�,⊥,z), we say that z is defended by � against ⊥. By (⊥,y,z), we say that z
is defended by ⊥ against y. Since ⊥ cannot be accepted in any case, (⊥,y,z) also cannot
be successful in any case. The notion of attack-defense shares some similarity with the
notion of weak-defence used in [10] in the sense that the relation of one argument (par-
tially) defending another argument is explicitely represented and in the new semantics.
The difference is that in [10], an attack-defense is a tuple in the form of 〈x,z〉, where z’s
attacker is not included, while in this paper, an attack-defense is a triple (x,y,z), where z’s
attacker y is included. Note that this fundamental defference has the following significant
consequences. First, weak-defence is viewed as a type of argument, and no new seman-
tics based on this notion is defined, while attack-defense is used to defined a new seman-
tics. Second, the semantics based on the notion of attack-defense has some interesting
properties that will be introduced in Section 3.

Formally, we have the following definition.

Definition 1 (Attack-defense framework). Let U be the universe of arguments, which
contains � and ⊥. An attack-defense framework is a set of attack-defenses T ⊆U ×U \
{�}×U \ {�,⊥}. We use zx

y to denote that x is a defender of a defendee z against an
attacker y.

Given an attack-defense zx
y, we use the following notations to denote the defendee,

defender and attacker in the attack-defense: defendee(zx
y) = z, defender(zx

y) = x, and
attacker(zx

y) = y. Given a set of attack-defenses D ⊆ T , we use the following notations:
defendee(D) = {z | zx

y ∈ D}, defender(D) = {x | zx
y ∈ D}, attacker(D) = {y | zx

y ∈ D},
and argument(D) = defendee(D)∪defender(D)∪attacker(D).

Then, an attack-defense semantics defines sets of attack-defenses that all are suc-
cessful together.

Definition 2 (Attack-defense semantics). Let U be the universe of arguments, U ′ =U \
{�}, and U ′′ =U \{�,⊥}. An attack-defense semantics is defined as a partial function

Σ : 2U×U ′×U ′′ → 22U×U ′×U ′′
, which associates a set of attack-defenses with a set of subsets

of these attack-defenses.

Intuitively, we say that an attack-defense (x,y,z) is successful w.r.t. a set of attack-
defenses D if x is � or a defendee of D, and for each y′ �= y that attacks z, there is an
attack-defense (x′,y′,z) in D for some x′ ∈ defendee(D).

Definition 3 (Successful attack-defense). Let D ⊆ T be a set of attack-defenses, and zx
y ∈

T be an attack-defense. We say that zx
y is successful w.r.t. D if x =� or x ∈ defendee(D),

and for each y′ �= y that attacks z, ∃zx′
y′ ∈ D for some x′ ∈ defendee(D).

We say that a set of attack-defenses D is admissible iff every attack-defense in D is
successful w.r.t. D, and no argument that is both a defendee and an attacker in D.

Definition 4 (Admissible set of attack-defenses). D ⊆ T is admissible iff every attack-
defense in D is successful w.r.t. D, and defendee(D)∩attacker(D) = /0.

Definition 5 (Complete attack-defense extension). D is complete iff D is admissible, and
for every attack-defense in T , if it is successful w.r.t. D, then it is in D.
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Definition 6 (Preferred attack-defense extension). D is preferred iff D is a maximal com-
plete attack-defense extension w.r.t. set inclusion.

Definition 7 (Stable attack-defense extension). D is stable iff D is admissible, and for
all zx

y ∈ T \D, y ∈ defendee(D).

Theorem 1. If D is a stable attack-defense extension, then it is complete and preferred,
but not necessarily vice versa.

Example 1. Let T1 = {ca
b,b

⊥
a , a�⊥, ed

b ,b
⊥
d ,d

�
⊥}. There is only one attack-defense extension

under all semantics D = {a�⊥,d
�
⊥ ,c

a
b,e

d
b}.

Similar to Dung’s theory, attack-defense semantics can also be characterized by a
function.

Definition 8 (Characteristic function). The characteristic function, denoted by FT , of an
attack-defense framework T is defined as follows:

FT : 2T → 2T ,
FT (D) = {zx

y | zx
y is successful w.r.t. D}.

Example 2. Let T2 = {b�a ,ce
f , ec

d}. We have: FT2( /0)= {b�a },F2
T2
( /0)=FT2( /0). FT2({ce

f ,e
c
d})=

{b�a ,ce
f ,e

c
d},F2

T2
({ce

f ,e
c
d}) = FT2({ce

f ,e
c
d}).

Definition 9 (Grounded attack-defense extension). The grounded attack-defense exten-
sion of T is the least fixed point of FT .

It is easy to see that FT is monotonic w.r.t. set inclusion.

Theorem 2. Let D be a set of attack-defenses. If defendee(D)∩attacker(D) = /0, then
D is a complete attack-defense extension iff D = FT (D). The grounded attack-defense
extension is the least complete attack-defense extension of F (w.r.t. set inclusion).

In this paper we use Σ(T ) to denote the set of attack-defense extensions of T un-
der semantics Σ, where Σ ∈ {CO,PR,GR,ST} denotes respectively complete, preferred,
grounded, and stable attack-defense semantics.

3. Properties of attack-defense semantics

Now, let us consider some properties of the attack-defense semantics.
The first property formulated in Theorem 3 is about the closure of attack-defenses:

If both zx
y and wu

v are in an attack-defense extension, and zw
y′ is an attack-defense for some

argument y′ ∈ argument(T ), then zw
y′ is also in the same attack-defense extension.

Theorem 3. Let T be an attack-defense framework. For all D∈Σ(T ), x,u∈ argument(T ),
if zx

y, wu
v ∈ D, then for some y′ ∈ argument(T ), if zw

y′ ∈ T then zw
y′ ∈ D.

The second property formulated in Theorem 4 is about the justfiability of attack-
defenses: If zx

y is in an attack-defense extension and x �= �, then there must be some xu
y′

in the same attack-defense extension.
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Theorem 4. For all D ∈ Σ(T ), if zx
y ∈ D and x �= � then there exists xu

y′ ∈ T for some
u,y′ ∈ argument(T ), s.t. xu

y′ ∈ D.

The third property is about the incompleteness of an attack-defense framework.

Theorem 5. For all zx
y,v

u
y ∈ T , it is not necessary that vx

y ∈ T .

This property can be illustrated by Example 1. When ca
b and ed

b are in T , but ea
b and

cd
b are not in T .

The fourth property is about the unsatisfiability of some types of attack-defenses.

Definition 10 (Unsatisfiability of attack-defense). We say that zx
y is unsatisfiable under

semantics Σ iff zx
y cannot be in any attack-defense extension under semantics Σ, where

Σ ∈ {CO,PR,GR,ST}.

In this paper, as typical examples, we introduce three types of unsatisfiable attack-
defenses. The first type is the attack-defenses in the form z⊥y , which is by definition
unsatisfiable.

Theorem 6. Defense z⊥y ∈ T is unsatisfiable under semantics Σ ∈ {CO,PR,GR,ST}.

The second type is the attack-defenses related to self-attacking arguments.

Theorem 7. Defenses zy
y,zx

z ∈ T are unsatisfiable. Furthermore, if zy
y ∈ T , then for all

u,v ∈ argument(T ), uy
v is unsatisfiable under semantics Σ ∈ {CO,PR,GR,ST}.

The third type is the attack-defenses related to a 3-cycle consisting of x, y and z such
that x attacks y, y attacks z, and z attacks x.

Theorem 8. If there exist xy
z ,yz

x,z
x
y ∈ T , then xy

z ,yz
x and zx

y are unsatisfiable under seman-
tics Σ ∈ {CO,PR,GR,ST}.

Given an attack-defense framework T , the sets of unsatisfiable attack-defenses de-
picted in Theorems 6, 7 and 8, are denoted u1(T ), u2(T ) and u3(T ), respectively. Let
u(T ) = u1(T )∪u2(T )∪u3(T ).

When an attack-defense is unsatisfiable under a semantics Σ, it might be removed
from an attack-defense framework without affecting the evaluation of the status of other
attack-defenses in the theory.

Under stable attack-defense semantics, the removal of an attack-defense might
change the emptiness of the set of extensions of an attack-defense framework. For in-
stance, let T = {z⊥y }, which has no stable attack-defense extension. However, after z⊥y is
removed, T ′ = {} has a stable attack-defense extension, which is the empty set.

Under other semantics, we have the following theorem, which cannot be applied to
stable attack-defense semantics.

Definition 11 (Reduct of an attack-defense framework). For any attack-defense frame-
work T , the reduct of T is defined as T− = T \u(T ).

Theorem 9. For any attack-defense framework T , and for Σ ∈ {CO,PR,GR}, Σ(T ) =
Σ(T−).
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4. Attack-defense equivalence

We differentiate two types of attack-defense equivalence: standard equivalence and root
equivalence.

Definition 12 (Standard attack-defense equivalence). Let T1 and T2 be two attack-
defense frameworks. T1 and T2 are equivalent under attack-defense semantics Σ, denoted
T1 ≡Σ

d T2, iff Σ(T1) = Σ(T2).

Root equivalence is defined in terms of the notion of transitive closure of defenses.
In this paper, if zx

y and vz
u are all in D, we say that x is an indirect defender of v w.r.t.

D. For simplicity, when we consider the defense relation between x and z, we write (x,z),
instead of (x,y,z) or zx

y. The defense relation is transitive, i.e., if (x,z) and (z,u) hold,
then (x,u) holds. Formally, we have the following definition.

Definition 13 (Transitive closure of defenses). For all D∈Σ(T ), let D= {(x,z) | zx
y ∈D}.

The transitive closure of D is denoted D+.

Given an attack-defense extension D, for any argument z ∈ argument(T ), we say an
argument x ∈ argument(D) is a root reason of accepting z, if (x,x)∈D+ and (x,z)∈D+.
We say that � is a root reason of accepting z, if (�,z) ∈ D+.

Example 3. Let T3 = {ae
f ,b

c
d ,c

f
a ,da

c ,e
d
b , f b

e }. Under preferred attack-defense seman-

tics, PR(T3) = {D1,D2}, where D1 = {ae
f ,d

a
c ,e

d
b} and D2 = {bc

d , f b
e ,c

f
a}. So, we have:

D1 = {(a,d),(d,e),(e,a)}. D1
+
= D1 ∪{(a,a),(d,d),(e,e),(a,e),(d,a),(e,d)}. D2 =

{(b, f ),( f ,c),(c,b)}. D2
+
= D2 ∪{(b,b),(c,c),( f , f ),(b,c),(c, f ),( f ,b)}. So, in D1, a,

d and e are root reasons of accepting a, d and e, resp. The results are similar in D2.

Definition 14 (Root reasons for accepting arguments). Given an attack-defense exten-
sion D, for any argument z ∈ argument(T ), the root reasons for accpecting z, denoted
r(z,D), is defined as follows.

r(z,D) = {x | (x,x) ∈ D+
,(x,z) ∈ D+}∪ {� | (�,z) ∈ D+} (1)

The set of root reasons for accepting arguments in T under semantics Σ is defined as
follows.

rootΣ(z,T ) = {r(z,D) | D ∈ Σ(T )} (2)

Definition 15 (Root equivalence). Let T and T ′ be two attack-defense frameworks. For
all B ⊆ argument(T )∩ argument(T ′), we say that T and T ′ are equivalent w.r.t. the
root reasons for accepting B under semantics Σ, denoted T ≡Σ

r,B T ′, iff for all z ∈ B,
rootΣ(z,T ) = rootΣ(z,T ′).

When B = argument(T ) = argument(T ′), we write T ≡Σ
r T ′ for T ≡Σ

r,B T ′.

Example 4. Continue Example 3. Let T ′
3 = {aa

b,b
b
a}. PR(T ′

3) = {D′
1,D

′
2}, where D′

1 =
{aa

b}, D′
2 = {bb

a}. Let B = {a,b}. Under preferred attack-defense semantics, it holds
that T3 ≡PR

r,B T ′
3 , because rootPR(a,T3) = rootPR(a,T ′

3) = {{a},{}}, and rootPR(b,T3) =
rootPR(b,T ′

3) = {{},{b}}.
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Theorem 10. For any attack-defense frameworks T and T ′, for any B ⊆ argument(T )∩
argument(T ′), if T ≡Σ

d T ′ then T ≡Σ
r,B T ′, but not vice versa.

5. Attack-defense semantics in Dung-style argumentation

In this section, we introduce the application of attack-defense semantics to Dung-style
argumentation. First, let us recall some notions of Dung-style argumentation.

5.1. Preliminaries

According to Dung-style argumentation [9], an AF is defined as F = (A ,→), where A
is a set of arguments and →⊆ A ×A is a set of attacks between arguments.

Let F = (A ,→) be an AF. Given a set B ⊆ A and an argument α ∈ A , B attacks
α , denoted B → α , iff there exists β ∈ B such that β → α . We call an argument an initial
argument if it has no attacker.

Given F = (A ,→) and E ⊆ A , we say: E is conflict-free if �α,β ∈ E such that
α → β ; α ∈ A is defended by E if ∀β → α , E → β ; B is admissible if E is conflict-
free, and each argument in E is defended by E; E is a complete extension of F if E
is admissible, and each argument in A that is defended by E is in E. E is a preferred
extension of F if E is an maximal complete extension of F . E is the grounded extension
of F if E is the minimal complete extension of F . W use σ(F ) to denote the set of
σ extensions of F , where σ ∈ {co,pr,gr,st} (indicating complete, preferred, grounded,
stalbe semantics, reps.) is a function mapping each AF to a set of σ extensions, called σ
semantics.

For AFs F1 = (A1,→1) and F2 = (A2,→2), we use F1 ∪F2 to denote (A1 ∪
A2,→1 ∪→2). The standard equivalence and strong equivalence of AFs are defined as
follows.

Definition 16 (Standard and strong equiv. of AFs). [11] Let F and G be two AFs.

• F and G are of standard equivalence w.r.t. a semantics σ , in symbols F ≡σ G ,
iff σ(F ) = σ(G ).

• F and G are of strong equivalence w.r.t. a semantics σ , in symbols F ≡σ
s G , iff

for all AF H , it holds that σ(F ∪H ) = σ(G ∪H ).

Example 5. Consider F3 −F6 in Section 1. In terms of Definition 16, under complete
semantics, we have: F3 �≡co F4, F3 �≡co

s F4; F5 ≡co F6, F5 �≡co
s F6.

Given an AF F = (A ,→), the kernel of F under complete semantics, call c-kernel,
is defined as follows.

Definition 17 (c-kernel of an AF). [11] For an AF F = (A ,→), the c-kernel of F is
defined as F ck = (A ,→ck), where

→ck =→\{α → β | α �= β ,α → α,β → β} (3)

According to [11], it holds that co(F ) = co(F ck), and for any AFs F and G :
F ck = G ck iff F ≡c

s G .
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5.2. Attack-defense framework of an AF

Given F = (A ,→), the attack-defense framework of F can be defined in the following
way.

For x,y,z ∈ A , if x → y and y → z, then (x,y,z) is an attack-defense. For each initial
argument z ∈ A , there is a unique defense (�,⊥,z). For an argument z that is attacked
by an initial argument y, there is an attack-defense (⊥,y,z).

Definition 18 (Attack-defense framework of an AF). Let F = (A ,→) be an AF. The
attack-defense framework of F , denoted d(F ), is represented as follow.

d(F ) = {(zx
y | (x,y,z ∈ A )∧ (x → y)∧ (y → z)}∪{z�⊥ | (z ∈ A )∧ (z− = /0)}

∪{z⊥y | (y,z ∈ A )∧ (y → z)∧ (y− = /0)}
According to the definition of the attack-defense framework of an AF, we have the

following theorem.

Theorem 11. Let d(F ) be the attack-defense framework of an AF F = (A ,→). For all
zx

y,v
u
y ∈ d(F ), it holds that vx

y ∈ d(F ).

Example 6. Continue Example 1. d(F7)=T1∪{ea
b,c

d
b}= {ca

b,b
⊥
a ,a

�
⊥,e

d
b ,b

⊥
d ,d

�
⊥ ,e

a
b,c

d
b}.

F7 : a �� b ��

��

c

d

		

e

This example shows that the attack-defense framework in Example 1 cannot be rep-
resented as an attack-defense framework of an AF, in that ea

b and cd
b do not exist in T1,

but have to be included in d(F7). The underlying reason is that in practical dialogues,
the combination of arguments and attacks to form defense are contextual and may not
refer to an AF. However, in some situations, such kind of knowledge exists, as described
in the first section.

5.3. Correspondence to Dung’s semantics

First, under a given attack-defense semantics, for each attack-defense extension of the
attack-defense framework of an AF, the set of defendees of the attack-defense extension
is an argument extension under a corresponding Dung’s semantics.

Theorem 12. For all D∈Σ(d(F )), defendee(D)∈σ(F ), where Σ∈{CO,PR,GR,ST}
and σ ∈ {co,pr,gr,st}.

Second, under a given Dung’s semantics, for each extension E of an AF, there is a
set of attack-defenses constructed from E such that this set is an attack-defense extension
of the attack-defense framework generated from the AF, under a corresponding attack-
defense semantics.

Theorem 13. For all E ∈ σ(F ), let def(E) = {zx
y | zx

y ∈ d(F ) : x,z ∈ E}∪{z�⊥ | z�⊥ ∈
d(F ) : z ∈ E}. Then, def(E) ∈ Σ(d(F )).
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Example 7. Consider F8 below. We have: co(F8) = {E1,E2}, where E1 = {}, E2 =
{b}; def(E1) = {}, def(E2) = {bb

a}; CO(d(F8)) = {D1,D2}, where D1 = {}, D2 = {bb
a}.

So, it holds that def(E1) ∈ CO(d(F8)),def(E2) ∈ CO(d(F8)).

F8 : a �� b��




c

��

5.4. Reduct of the attack-defense framework of an AF

Given the attack-defense framework of an AF, some of the unsatisfiable attack-defenses
can be removed, resulting a reduct of the attack-defense framework.

Example 8. Consider F1 again. In F1, for argument c, there are two defenses cd
b and

ca
b. Intuitively, the defense ca

b does not contribute to the acceptance of c, because the self-
attacking argument a cannot be accepted in any situation and therefore cannot provide
support to the acceptance of some other arguments. In other words, when defenses are
used to evaluate the status of arguments, the status of c can be determined only according
to defense cd

b, without considering unstatisfiable defenses related to the self-attacking
arguments. According to Theorem 7, d(F1) = {aa

a,b
a
a,c

a
b,c

d
b ,d

�
⊥}. The reduct of d(F1) is

d(F1)
− = {cd

b ,d
�
⊥}. Under any semantics Σ∈{CO,PR,GR}, Σ(d(F1)) =Σ(d(F1)

−) =
{D}, where D = {cd

b ,d
�
⊥}.

F1 : a��
�� b �� c F ′

1 : b �� c

d

��

d

��

It is interesting to note that while it is natural to remove unsatisfiable attack-defenses
without affecting the evaluation of some other attack-defenses, odd cycles cannot be
removed from an AF without affecting the evaluation of some other arguments, except
same special cases. For instance, in F1, the self-attacking argument a can be removed
without affecting the evaluation of other arguments in F1. In other words, under Dung’s
semantics σ ∈ {co,pr,gr}, σ(F1) = σ(F ′

1). However, such removal of self-attacking
arguments cannot be applied to all situations in general.

Example 9. Consider F2 again. Under Dung’s admissibility semantics, no argument is
accepted. If we remove the self-attacking argument a, resutling F ′

2, then arguments b and
d will be accepted. This means that the removal of a self-attacking argument affects the
status of other arguments. However, according to Theorem 7, in the set of attack-defenses
d(F2) = {aa

a, ba
a, ca

b, db
c}, aa

a, ba
a and ca

b are unsatisfiable under any semantics. After
removing all these unsatisfiable defense, we obtain a reduct of d(F2), i.e., d(F2)

− =
{db

c}. Under all semantics, both d(F2) and d(F2)
− have one unique extension, which is

the empty set.

F2 : a��
�� b �� c �� d F ′

2 : b �� c �� d

Another point worth to be noted is that the unsatisfiability of an attack-defense does
not mean that its defendee is not acceptable. See the following example. In this case, ba

a
is unacceptable, but the argument b is acceptable.
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F9 : a


�� b �� c

d

��

Finally, according to Theorems 6, 7 and 8, the unsatisfiability of attack-defenses
of an AF is not relevant to (and therefore not affacted by) the addition of some other
arguments or attacks to the AF. The following example further illustrates this property.

Example 10. d(F10) = {d�
⊥ ,a

⊥
d ,a

b
c ,b

d
a ,b

c
a,c

a
b}, in which a⊥d , ab

c , bc
a and ca

b are un-
acceptable. So, d(F10)

− = {d�
⊥ ,b

d
a}. After adding an attack from c to b, the attack-

defense framework of the resulting AF is d(F11) = d(F10)∪{bb
c ,c

c
b}, and d(F11)

− =
d(F10)

− ∪{bb
c ,c

c
b}.

F10 : d �� a �� b





F11 : d �� a �� b




c

��

c

�� ��

5.5. Equivalence of AFs under attack-defense semantics

The standard equivalence and strong equivalence of AFs cannot represent the equiva-
lence of some AFs in terms of some interesting interpretations as illustrated in Section
1. The attack-defense equivalence provides more information. In this section, we intro-
duce some relations between attack-defense equivalence and the existing two types of
equivalence of AFs.

Theorem 14. Let F and G be two AFs. If d(F ) ≡Σ
d d(G ), then F ≡σ G , where Σ ∈

{CO,PR,GR,ST}, σ ∈ {co,pr,gr,st}.

Note that in many cases F ≡σ G , but d(F ) �≡Σ
d d(G ). Consider the following ex-

ample.

Example 11. Since co(F5) = co(F6) = {{a,c}}, it holds that F5 ≡co F6. Since
CO(d(F5)) = {a�⊥,c

a
b} and CO(d(F6)) = {a�⊥,c

�
⊥}, CO(d(F5)) �= CO(d(F6)). So, it

is not the case that d(F5)≡CO
d d(F6).

About the relation between attack-defense equivalence and strong equivalence of
AFs, due to space limit, we only consider Dung’s complete semantics. For further in-
formation about strong equivalence and kernels under Dung’s semantics, the reader is
referred to [11]. Formally, we have the following lemma and theorem.

Lemma 1. It holds that CO(d(F )) = CO(d(F ck)).

Theorem 15. Let F and G be two AFs. If F ≡co
s G , then d(F )≡CO

d d(G ).

Note that in many cases d(F ) ≡CO
d d(G ), but F �≡co

s G . Consider the following
example.

Example 12. Since CO(d(F12)) = CO(d(F13)) = {{a�⊥, ca
b}}, d(F12) ≡CO

d d(F13).
However, since F ck

12 �= F ck
13 , F12 �≡co

s F13.

F12 : a �� b ��
��

F13 : a �� b
��

c c
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The relation between root equivalence and Dung’s standard equivalence is formu-
lated by the following property.

Theorem 16. Let F = (A1,→1) and H = (A2,→2) be two AFs. If d(F ) ≡Σ
r d(H ),

then F ≡σ H , where Σ ∈ {CO,PR,GR,ST} and σ ∈ {co,pr,gr,st}.

Note that in many cases F ≡σ H , but d(F ) �≡Σ
r d(H ). This can be easily verified

by considering F5 and F6 in Example 11.
The notion of root equivalence of AFs can be used to capture a kind of summariza-

tion in the graphs. Consider the following example borrowed from [3].

Example 13. Let F14 = (A ,→) and F15 = (A ′,→′), illustrated below. Under com-
plete semantics, F15 is a summarization of F14 in the sense that A ′ ⊆ A , and the
root reason of each argument in F15 is the same as that of each corresponding argu-
ment in F14. More specifically, it holds that rootCO(e3,d(F14)) = rootCO(e3,d(F15)) =
{{�}}, rootCO(e2,d(F14)) = rootCO(e2,d(F15)) = {{�}}, and rootCO(e1,d(F14)) =
rootCO(e1,d(F15)) = {{�}}.

F14 : e1 �� a1 �� a2 �� o �� e3 F15 : e1 �� o �� e3

e2 �� b1 �� b2

��

e2

��

Formally, we have the following definition.

Definition 19 (Summarization of AFs). Let F = (A1,→1) and H = (A2,→2) be two
AFs. F is a summarization of H under a semantics Σ iff A1 ⊂ A2, and F ≡Σ

r,A1
H .

6. Conclusions

The main contributions of this paper are three-fold. First, we have introduced novel
notions of attack-defense and successful attack-defenses, and used them to formulate
an attack-defense framework and attack-defense semantics. It turns out that an attack-
defense framework is more expressive than a Dung-style argumentation framework, in
the sense that Dung’s semantics can be represented in attack-defense semantics, but not
vice versa. Second, we have studied three types of unsatisfiable attack-defenses. The
attack-defenses related to odd cycles can be removed without affecting the evaluation of
other attack-defenses, while odd cyles cannot be removed from an AF without affect-
ing the evaluation of some other arguments in general. Third, we have formulated two
new kinds of equivalence relation between AFs, i.e., attack-defense equivalence and root
equivalence, and shown that attack-defense semantics can be used to capture the equiv-
alence of AFs from the perspective of reasons for accepting arguments. In addition, we
have defined a notion of summarization of AFs by exploiting root equivalence.

The idea of exploiting more usages of attacks has been used in some previous ap-
proaches, e.g., [13], [1], and [2]. However, defining a semantics in terms of the notion of
attack-defense and studying the properties of this new semantics are novel.

Meanwhile, the notions of attack, defense and acceptability have very closed rela-
tions. In this paper, the notion of attack-defense is defined according to Dung’s notion
of admissibility. In the future work, it is worth to consider other notions of admissibility,
e.g., strong admissibilty [6], and weak admissibilty [4].
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Last but not least, attack-defense semantics and root equivalence can be applied
to dialogues and explainable AI. It would be interesting to investigate new explanation
methods by combining attack-defense semantics and some existing approaches, e.g., [8],
[5], and [7].
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