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The structured argumentation system that represents arguments by premise-conclusion pairs 
is called premise-conclusion argumentation (PA) and the one that represents arguments by their 
premises is called base argumentation (BA). To assess whether BA and PA have the same ability 
in argument evaluation by extensional semantics, this paper defines the notion of extensional 
equivalence between BA and PA. It also defines the notion of bisimulation between BA and PA and 
shows that bisimulation implies extensional equivalence. To illustrate how base argumentation, 
bisimulation and extensional equivalence can contribute to the study of PA, we prove some new 
results about PA by investigating the extensional properties of a base argumentation framework 
and exporting them to two premise-conclusion argumentation frameworks via bisimulation and 
extensional equivalence. We show that there are essentially three kinds of extensions in these 
frameworks and that the extensions in the two premise-conclusion argumentation frameworks 
are identical.

1. Introduction

Formalizing arguments through logic enables the direct utilization of tools developed in logic, including formal languages for 
knowledge representation and various models and calculi for deciding logical consequences. Given an argument consisting of declar-
ative sentences with one conclusion, after determining a logic, generally the argument can be represented in two different levels of 
abstraction:

(1) Representing the argument as a sequence of formulas. In addition to translating each declarative sentence into a formula in 
the formal language, the representation also indicates the logical relation between the formulas (e.g., it may say that 𝜓 is obtained 
from 𝜑 → 𝜓 and 𝜑 by modus ponens). In this case, an argument is a sequence of formulas, in which each formula is either a logical 
axiom, an assumption, or can be derived from the preceding formula(s) by an inference rule.

(2) Representing the argument as a premise-conclusion pair. After determining the premises and the conclusion of the argument 
through manual analysis, they are translated into formulas. Collect the premises into a set 𝛤 and denote the conclusion by a formula 𝜑. 

✩ This paper is an extension of work originally presented in [13].
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The argument is then represented as a premise-conclusion pair (𝛤 , 𝜑). In the representation, the process of logical reasoning is hidden 
and a derivation from 𝛤 to 𝜑 is assumed to be available.

A less common way of representing arguments is to represent the argument by its premises. In this way of representation, the 
process of logical reasoning as well as the conclusion is hidden, and as a result, a formal argument can represent more than one 
argument. This is a more compact way of knowledge representation.

Closely related to this way of representation is a hypothesis called logical omniscience hypothesis. It assumes that an intelligent agent 
has perfect logical ability and knows all the logical consequences after knowing the premises. This hypothesis is widely assumed in 
epistemic logic, but some criticize it as irrational [30]. After all, if it were true, it would not cost mathematicians hundreds of years 
to prove Fermat’s last theorem. Due to the exceptional computing power of computers as well as the availability for algorithms to 
decide certain (fragments of) logics, this paper assumes that the logical omniscience hypothesis and representing an argument by its 
premises are reasonable in formal representation of everyday reasoning.

For example, consider the following arguments1:

Argument 𝐴

I stop existing without my body.

If I stop existing without my body, then I am my body.

Therefore, I am my body.

Argument 𝐵

I can imagine existing without my body.

If I can imagine existing without my body, then I am not my body.

Therefore, I am not my body.

For Argument 𝐴, we use 𝜑 to represent the first premise, 𝜓 the conclusion, and 𝜑 → 𝜓 the second premise. For Argument 𝐵, we use 
𝜉 to represent the first premise, ¬𝜓 the conclusion, and 𝜉→ ¬𝜓 the second premise. Then Argument 𝐴 can be formally represented 
in three different ways, each corresponding to a way of argument representations mentioned above:

– 1. 𝜑 (premise); 2. 𝜑 → 𝜓 (premise); 3. 𝜓 (1, 2, modus ponens);
– ({𝜑, 𝜑 → 𝜓}, 𝜓);
– {𝜑, 𝜑 → 𝜓}.

Similarly, argument 𝐵 can be formally represented as follows:

– 1. 𝜉 (premise); 2. 𝜉→ ¬𝜓 (premise); 3. ¬𝜓 (1, 2, modus ponens);
– ({𝜉, 𝜉→ ¬𝜓}, ¬𝜓);
– {𝜉, 𝜉→ 𝜓}.

Arguments 𝐴 and 𝐵 are in conflict. Abstract argumentation [15] is a model for conflicting arguments, which views argumentation 
as a framework consisting of a set of arguments and a binary attack relation on arguments. A set of acceptable arguments is called 
an extension. An extensional semantics provides criteria for selecting extensions from the framework through the attack relation.

Structured argumentation [23,24,18,19,29,14,7,8] also views argumentation as a framework, but the arguments and attack rela-
tions are not longer atomic objects, and are defined in terms of logical and/or defeasible inference rules. Structured argumentation 
uses the same extensional semantics as abstract argumentation to decide which of the arguments are acceptable. Given a deductive 
logic, the structured argumentation system that represents arguments by their premises is called base argumentation (BA) [13] and 
the one that represents arguments by premise-conclusion pairs is called premise-conclusion argumentation (PA) [7,8].2

Arguments 𝐴 and 𝐵 may be graphically represented in abstract argumentation, PA and BA as follows respectively, where arrows 
represent attacks:

𝐵

𝐴

({𝜉, 𝜉→ ¬𝜓},¬𝜓)

({𝜑,𝜑→ 𝜓}, 𝜓)

{𝜉, 𝜉→ ¬𝜓}

{𝜑,𝜑→ 𝜓}

The question of interest in this paper is whether BA and PA have the same ability in argument evaluation via extensional semantics. 
With its obvious simplicity, if BA has the same ability in argument evaluation as PA, then BA is desirable as an argumentation system.

1 Argument 𝐵 is adapted from [27].
2 Premise-conclusion argumentation is called deductive argumentation in the literature. Since base argumentation is also defined in terms of deductive logic, it is 
2

named in terms of the form of arguments in this paper to distinguish it from base argumentation.
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To assess whether BA and PA have the same ability in argument evaluation, we define the notion of extensional equivalence between 
a base argumentation framework (BAF) and a premise-conclusion argumentation framework (PAF). Extensional equivalence is defined in 
terms of an operation that generates premise-conclusion arguments from premises and an operation that extracts premises from 
premise-conclusion arguments. The operations reflect the logical omniscience hypothesis mentioned above. Extensional equivalence 
requires the two operations to be bijections between the extensions of the BAF and the extensions of the PAF.

Moreover, we define the notion of bisimulation between a BAF and a PAF, which is similar to the notion of bisimulation in transition 
systems that describes the behavioral equivalences between transition systems (see Section 2.3.4 in [21]) and the notion of bisimulation 
in modal logic that preserves satisfiability between models (see Section 2.2 in [9]). We prove that bisimulation implies extensional 
equivalence. This is depicted graphically as follows:

Base argumentation
Premise-conclusion

argumentation

Bisimulation
Extensional

equivalence
⇒

To illustrate how base argumentation, bisimulation and extensional equivalence can contribute to the study of premise-conclusion 
argumentation, we conduct an in-depth study of the extensional properties of a BAF and export them to two PAFs via bisimulation 
and extensional equivalence. We show that there are essentially three kinds of extensions in these frameworks: complete, grounded 
and preferred extensions. We also show that the extensions in the two PAFs are identical.

This paper contributes to structured argumentation. Since BA and PA are extensionally equivalent under certain conditions, BA 
may be preferred in some cases because of its obvious simplicity. In addition, we consider seven kinds of extensional semantics in 
this paper and show that for a BAF and two PAFs, there are essentially three kinds of extensions. This contributes to the question of 
whether the various extensional semantics are essentially different. For a detailed discussion, see Section 9.

The rest of the paper is structured as follows. Section 2 reviews abstract argumentation, abstract logic and premise-conclusion 
argumentation. Section 3 defines base argumentation. Section 4 defines the notion of extensional equivalence. Section 5 defines 
the notion of bisimulation. Section 6 shows that bisimulation implies extensional equivalence. Section 7 investigates the extensional 
properties of a BAF. Section 8 exports the properties of the BAF in Section 7 to two PAFs via bisimulation and extensional equivalence. 
Section 9 discusses related works and concludes the paper.

2. Preliminaries

2.1. Abstract argumentation

Central to the theory of abstract argumentation is abstract argumentation frameworks [15], which are essentially directed graphs 
in which the arguments are represented by nodes and the attack relations are represented by arrows.

Definition 1. An abstract argumentation framework  is a pair (, ) where  is a set of arguments and  ⊆ ×.  is called the 
attack relation of  . If (𝐴, 𝐵) ∈, we say that 𝐴 attacks 𝐵.

Given an abstract argumentation framework  = (, ), a set of arguments 𝑆 ⊆ attacks argument 𝐴 ∈ if there is an argument 
𝐴′ ∈ 𝑆 such that 𝐴′ attacks 𝐴. We say that 𝑆 defends 𝐴 if for each argument 𝐵 ∈, if 𝐵 attacks 𝐴, then 𝑆 attacks 𝐵. For a set 𝑆 of 
arguments, let 𝑆+ ∶= {𝐴 ∣ 𝑆 attacks 𝐴}.

Various extensional semantics are considered in the literature to decide which arguments in an abstract argumentation framework 
are acceptable (see e.g., [15,31] [10,16,11]). In this paper, we consider the following semantics:

Definition 2. Let  = (, ) be an argumentation framework and 𝑆 ⊆. 𝑆 is conflict-free if there is no argument 𝐴 ∈ 𝑆 such that 
𝑆 attacks 𝐴 and is admissible if 𝑆 is conflict-free and 𝑆 defends each of its elements. Then we say that:

– 𝑆 is a complete extension if 𝑆 is admissible and contains each argument it defends.
– 𝑆 is a stable extension if 𝑆 is conflict-free and attacks each argument which does not belong to 𝑆 .
– 𝑆 is a grounded extension if 𝑆 is the least complete extension.
– 𝑆 is a preferred extension if 𝑆 is a maximal complete extension.3
3

3 In Dung [15], a preferred extension is defined to be a maximal admissible extension. These two definitions are equivalent.
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– 𝑆 is a semi-stable extension if 𝑆 is a complete extension and 𝑆 ∪ 𝑆+ is maximal among complete extensions, i.e., there exists no 
complete extension 𝑆′ such that 𝑆 ∪𝑆+ ⊂ 𝑆′ ∪ 𝑆′+.

– 𝑆 is an ideal extension if 𝑆 is a maximal complete extension that is contained in each preferred extension.
– 𝑆 is an eager extension if 𝑆 is a maximal complete extension that is contained in each semi-stable extension.

In the above statements, maximality and minimality are considered with respect to set inclusion.

2.2. Abstract logic

Logical instantiations of abstract argumentation need a formal logic for representing arguments and defining attack relations. 
Various formal logics capturing different patterns of reasoning are studied in the literature. To make the results in this paper more 
general, abstract logics [28] are used as the underlying logic. An abstract logic is a pair of a formal language and a consequence relation 
on this language satisfying certain important logical properties. Many well-known formal logics like propositional logic, intuitionistic 
logic, epistemic logics and deontic logics are abstract logics defined below.

Abstract logics are defined in terms of abstract consequence relations.

Definition 3. Let  be a denumerable logical language. We use 𝜑, 𝜑, 𝜓 for formulas in , and 𝛤 , 𝛥 for multisets of formulas in . A 
relation ⊢ ⊆ () × is an abstract consequence relation if it satisfies the following conditions: for any 𝛤 , 𝛥 ⊆  and 𝜑, 𝜓 ∈ :

1. (Reflexivity) If 𝜑 ∈ 𝛤 , then 𝛤 ⊢ 𝜑.
2. (Monotonicity) If 𝛤 ⊢ 𝜑 and 𝛤 ⊆ 𝛥, then 𝛥 ⊢ 𝜑.
3. (Transitivity) If 𝛤 ⊢ 𝜑 and {𝜑} ∪ 𝛤 ′ ⊢ 𝜓 , then 𝛤 ∪ 𝛤 ′ ⊢ 𝜓 .

An abstract logic is a pair (, ⊢) where ⊢ is an abstract consequence relation on .

If 𝛤 = {𝜑1, … , 𝜑𝑛} we often write 𝜑1, … , 𝜑𝑛 ⊢ 𝜓 for {𝜑1, … , 𝜑𝑛} ⊢ 𝜓 . If 𝛤 contains just one formula, e.g., 𝛤 = {𝜑}, we write 
𝜑 ⊢ 𝜓 for {𝜑} ⊢ 𝜓 .

We assume that (, ⊢) contains the following connectives and satisfies the corresponding properties:

– Falsity ⊥: ⊥ ⊢ 𝜑 for any formula 𝜑.
– Conjunction ∧: (1) 𝜑, 𝜓, 𝛤 ⊢ 𝜉 iff 𝜑 ∧𝜓, 𝛤 ⊢ 𝜉; (2) 𝛤 ⊢ 𝜑 ∧𝜓 iff 𝛤 ⊢ 𝜑 and 𝛤 ⊢ 𝜓 .
– Negation ¬: (1) 𝜑, 𝛤 ⊢ ⊥ iff 𝛤 ⊢ ¬𝜑; (2) 𝛤 ⊢ 𝜑 iff ¬𝜑, 𝛤 ⊢ ⊥.

It follows from the property of negation that 𝜑, 𝛤 ⊢ 𝜓 iff ¬𝜓, 𝛤 ⊢ ¬𝜑.
We use the following abbreviations: 𝜑 → 𝜓 for ¬(𝜑 ∧ ¬𝜓), 𝜑 ↔ 𝜓 for (𝜑 → 𝜓) ∧ (𝜓 → 𝜑). For a finite set 𝛤 = {𝜑1, … , 𝜑𝑛}, let ⋀
𝛤 ∶= 𝜑1 ∧… ∧𝜑𝑛.
Let 𝐶𝑛⊢(𝛤 ) be the set of logical consequences of 𝛤 , i.e., 𝐶𝑛⊢(𝛤 ) ∶= {𝜑 ∣ 𝛤 ⊢ 𝜑}.
A set 𝛤 of -formulas is called ⊢-inconsistent if 𝛤 ⊢ ⊥. 𝛤 is called consistent if it is not inconsistent. When the consequence relation 

is clear from the context, we omit ⊢ and simply say that 𝛤 is consistent or inconsistent.
Next we show that if a set of formulas implies a formula and its negation, then it is inconsistent.

Proposition 1. For an abstract logic (, ⊢) and a set 𝛤 of formulas, if 𝛤 ⊢ 𝜑 and 𝛤 ⊢ ¬𝜑 for some formula 𝜑, then 𝛤 is inconsistent.

Proof. By the property of conjunction, 𝛤 ⊢ 𝜑 ∧ ¬𝜑. By the reflexivity of ⊢, 𝜑 ⊢ 𝜑. By the property of ¬, 𝜑, ¬𝜑 ⊢ ⊥. By the property 
of conjunction, 𝜑 ∧ ¬𝜑 ⊢ ⊥. By the transitivity of ⊢, 𝛤 ⊢ ⊥. □

2.3. Premise-conclusion argumentation

This subsection introduces the premise-conclusion argumentation defined in the literature (see e.g., [20]). It is a logical instanti-
ation of abstract argumentation.

In premise-conclusion argumentation, it is assumed as given an abstract logic (, ⊢), which provides the formal language to 
formalize relational data and the logical mechanism for automated reasoning.

The formalized data form a knowledge base. It is a subset of our logical language  and possibly inconsistent.

Definition 4. For an abstract logic (, ⊢), a knowledge base 𝛴 is a subset of .

Then we define the notion of premise-conclusion arguments. There are three requirements for premise-conclusion arguments: con-
sistency of premises, logical entailment of the conclusion from the premises, and the absence of a proper subset of premises that can 
4

yield the same conclusion.
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𝐃𝐷𝑈 𝐃𝐷𝐷

𝐃𝐶𝑈 𝐃𝑈

𝐃𝑅 𝐃𝐷𝑅

𝐃𝐷

Fig. 1. Containment between attack relations on premise-conclusion arguments. An arrow from 𝐷1 to 𝐷2 indicates that 𝐷1 ⊆𝐷2 .

Definition 5. Given an abstract logic (, ⊢) and a knowledge base 𝛴, a premise-conclusion argument is a pair (𝛤 , 𝜑) such that

1. 𝛤 is a finite consistent subset of 𝛴.
2. 𝛤 ⊢ 𝜑.
3. There is no 𝛤 ′ ⊂ 𝛤 such that 𝛤 ′ ⊢ 𝜑.

We use capital letters 𝐴, 𝐵, … for premise-conclusion arguments. For 𝐴 = (𝛤 , 𝜑), let S(𝐴) = 𝛤 and call it the premise set of 𝐴, and 
let C(𝐴) = 𝜑 and call it the conclusion of 𝐴. We say that (𝛤 , 𝜑) is a sub-argument of (𝛥, 𝜓) if 𝛤 ⊆ 𝛥.

Example 1. Let (, ⊢) be propositional logic and knowledge base 𝛴 ∶= {𝑝, ¬𝑝, 𝑞}. ({𝑝}, 𝑝) is a premise-conclusion argument; ({𝑝, 𝑞}, 𝑝)
is not a premise-conclusion argument, because {𝑝} ⊂ {𝑝, 𝑞} and ({𝑝}, 𝑝) is a premise-conclusion argument; {𝑝, ¬𝑝} ⊢ 𝑝 is not a premise-
conclusion argument because its premise set is inconsistent.

Lemma 1. [Existence of premise-conclusion arguments] Let (, ⊢) be an abstract logic and 𝛴 a knowledge base. If 𝛤 ⊆ 𝛴 is consistent and 
𝛤 ⊢ 𝜑, then there exists a minimal subset 𝛤 ′ of 𝛤 such that 𝛤 ′ ⊢ 𝜑 and (𝛤 ′, 𝜑) is a premise-conclusion argument.

Proof. Let 𝜑1, 𝜑2, … , 𝜑𝑚 be an enumeration of formulas in 𝛤 . Denote by 𝛤𝑖(1 ≤ 𝑖 ≤ 𝑚) the set of formulas obtained from 𝛤 by 
removing 𝜑𝑖. If there is no 𝛤𝑖 such that 𝛤𝑖 ⊢ 𝜑, then (𝛤 , 𝜑) is the required premise-conclusion argument. Otherwise, choose an 
arbitrary 𝛤𝑖 such that 𝛤𝑖 ⊢ 𝜑. Then we obtain a proper subset of 𝛤 which deduces 𝜑. Repeat the above process until we obtain a set 
𝛤 ′ such that for any 𝜓 ∈ 𝛤 ′, 𝛤 ′ ⧵ {𝜓} ⊬𝜑. Since 𝛤 ′ ⊆ 𝛤 , by the monotonicity of ⊢, 𝛤 ′ is consistent. By construction, 𝛤 ′ is minimal. 
Therefore, (𝛤 ′, 𝜑) is a premise-conclusion argument. □

Next we define attack relations on premise-conclusion arguments. Let 𝐴𝑟𝑝(𝛴) be the set of premise-conclusion arguments on 𝛴. 
The attack relation on 𝐴𝑟𝑝(𝛴) is represented by a function 𝐃 ∶𝐴𝑟𝑝(𝛴) ×𝐴𝑟𝑝(𝛴) → {0, 1}. If 𝐃(𝐴, 𝐵) = 1, we say that 𝐴 𝐃-attacks 𝐵. 
The following attack relations are considered in [20]. We use the following acronyms: defeater (𝐷), direct defeater (𝐷𝐷), undercut 
(𝑈 ), direct undercut (𝐷𝑈 ), canonical undercut (𝐶𝑈 ), rebuttal (𝑅), defeating rebuttal (𝐷𝑅).

Definition 6. Given premise-conclusion arguments (𝛤 , 𝜑), (𝛥, 𝜓),

– (𝛤 , 𝜑) 𝐃𝐷-attacks (𝛥, 𝜓), if 𝜑 ⊢ ¬ 
⋀
𝛥;

– (𝛤 , 𝜑) 𝐃𝐷𝐷-attacks (𝛥, 𝜓), if there is 𝜉 ∈ 𝛥 such that 𝜑 ⊢ ¬𝜉;
– (𝛤 , 𝜑) 𝐃𝑈 -attacks (𝛥, 𝜓), if there is 𝛥′ ⊆ 𝛥 such that 𝜑 ≡ ¬ 

⋀
𝛥′;

– (𝛤 , 𝜑) 𝐃𝐷𝑈 -attacks (𝛥, 𝜓), if there is 𝜉 ∈ 𝛥 such that 𝜑 ≡ ¬𝜉;
– (𝛤 , 𝜑) 𝐃𝐶𝑈 -attacks (𝛥, 𝜓) if 𝜑 ≡ ¬ 

⋀
𝛥;

– (𝛤 , 𝜑) 𝐃𝑅-attacks (𝛥, 𝜓), if 𝜑 ≡ ¬𝜓 ;
– (𝛤 , 𝜑) 𝐃𝐷𝑅-attacks (𝛥, 𝜓), if 𝜑 ⊢ ¬𝜓 ;

where 𝜑 ≡ 𝜓 means that 𝜑 ⊢ 𝜓 and 𝜓 ⊢ 𝜑.

The inclusive relation between the above attack relations is shown in Fig. 1.
Having defined arguments and attack relations, we can generate abstract argumentative frameworks. Such frameworks are called 

premise-conclusion argumentation frameworks.

Definition 7. Given an abstract logic (, ⊢), a knowledge base 𝛴 and an attack function 𝐃, a premise-conclusion argumentation frame-

work (PAF, for short) 𝐅𝐃
𝛴

is a pair (𝐴𝑟𝑝(𝛴), 𝐑𝐃), where 𝐴𝑟𝑝(𝛴) is the set of premise-conclusion arguments on 𝛴 and 𝐑𝐃 is a binary 
relation on 𝐴𝑟𝑝(𝛴) such that (𝐴, 𝐵) ∈𝐑𝐃 iff 𝐃(𝐴, 𝐵) = 1.

As abstract argumentation frameworks, PAFs can be evaluated directly using the semantics of abstract argumentation frameworks.

Example 2. Let (, ⊢) be propositional logic, 𝛴 = {𝑝, ¬𝑝, 𝑞} and 𝐃 =𝐃𝐷𝐷 . Part of the generated PAF 𝐅𝐃𝐷𝐷
𝛴

is shown in Fig. 2, where 
5

nodes represent arguments, arcs represent attacks and 𝑟, 𝑠 are new propositional variables.
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(∅, 𝑝 ∨ ¬𝑝)
(∅, 𝑝→ (𝑞→ 𝑞))

({𝑞}, 𝑞)
({𝑞}, 𝑞 ∨ 𝑟)

({𝑝, 𝑞}, 𝑝 ∧ 𝑞)

({𝑝, 𝑞}, (𝑝 ∧ 𝑞) ∨ 𝑟)

({𝑝, 𝑞}, 𝑠→ (𝑝 ∧ 𝑞))

({¬𝑝, 𝑞},¬𝑝 ∧ 𝑞)

({¬𝑝, 𝑞}, (¬𝑝 ∧ 𝑞) ∨ 𝑟)

({¬𝑝, 𝑞}, 𝑠→ (¬𝑝 ∧ 𝑞))

({𝑝}, 𝑝)

({𝑝}, 𝑝 ∨ 𝑟)

({𝑝}, 𝑠→ 𝑝)

({¬𝑝},¬𝑝)

({¬𝑝},¬𝑝 ∨ 𝑟)

({¬𝑝}, 𝑠→ ¬𝑝)

Fig. 2. Part of 𝐅𝐃𝐷𝐷
𝛴

with propositional logic as the underlying logic and 𝛴 = {𝑝,¬𝑝, 𝑞}.

(∅, 𝑝 ∨ ¬𝑝)

({𝑝, 𝑞}, 𝑝 ∧ 𝑞)

({¬𝑝, 𝑞},¬𝑝 ∧ 𝑞)

({𝑝}, 𝑝)

({¬𝑝},¬𝑝)

({𝑞}, 𝑞)

Fig. 3. Part of 𝐅𝐃𝐷𝑈
𝛴

with propositional logic as the underlying logic and 𝛴 = {𝑝,¬𝑝, 𝑞}.

It is worth noting that since the underlying logic is propositional logic, an infinite number of premise-conclusion arguments 
can be generated from one premise set. Take {𝑝} as an example. Since 𝜑 → (𝜓 → 𝜑) is a classical logical tautology, ({𝑝}, 𝑞 → 𝑝), 
({𝑝}, 𝑟 → (𝑞→ 𝑝)), … are premise-conclusion arguments. So we have an infinite number of premise-conclusion arguments with the 
premise set being {𝑝}. This explains why the above is only part of the generated PAF.

Although it is not possible to directly recognize which premise-conclusion arguments constitute complete extensions from the 
figure, it can be proved that the complete extensions in 𝐅𝐃𝐷𝐷

𝛴
are as follows:

𝐒1 = {𝐴 ∣ S(𝐴) = ∅,{𝑞}},

𝐒2 = {𝐴 ∣ S(𝐴) = ∅,{𝑞},{𝑝} or {𝑝, 𝑞}},

𝐒3 = {𝐴 ∣ S(𝐴) = ∅,{𝑞},{¬𝑝} or {¬𝑝, 𝑞}}.

When the attack relation is changed, the premise-conclusion argument framework is changed. Let 𝐃 = 𝐃𝐷𝑈 . Part of the premise-

conclusion argument framework 𝐅𝐃𝐷𝑈
𝛴

is shown in Fig. 3.

3. Base argumentation

This section defines base argumentation. The basic idea is to represent an argument by its premises. Given a formal logic and a 
knowledge base, this means to treat some particular subsets of the knowledge base as arguments. A straightforward idea is to treat a 
finite consistent subset of the knowledge base as an argument. However, we find that given a consistent subset, sometimes we cannot 
construct a premise-conclusion argument, which goes against our intention to simulate premise-conclusion argumentation with base 
argumentation.

Consider a set {𝑝, 𝑝 → 𝑞, 𝑞}. Its logical consequences are the same as {𝑝, 𝑝 → 𝑞}. It follows that for any formula 𝜑, if {𝑝, 𝑝 → 𝑞, 𝑞} ⊢
𝜑, then {𝑝, 𝑝 → 𝑞} ⊢ 𝜑. Since {𝑝, 𝑝 → 𝑞} is a proper subset of {𝑝, 𝑝 → 𝑞, 𝑞}, for any formula 𝜑, ({𝑝, 𝑝 → 𝑞, 𝑞}, 𝜑) does not satisfy the
minimality requirement of premise-conclusion arguments.

Thus, in addition to finiteness and consistency, we also impose a minimality requirement for a base argument 𝛤 : there is no 
𝛤 ′ ⊂ 𝛤 such that 𝐶𝑛⊢(𝛤 ) = 𝐶𝑛⊢(𝛤 ′).

Definition 8. Given a logic (, ⊢) and a knowledge base 𝛴, a base argument 𝛤 is a finite consistent subset of 𝛴 such that there does 
6

not exist 𝛤 ′ ⊂ 𝛤 such that 𝐶𝑛⊢(𝛤 ) = 𝐶𝑛⊢(𝛤 ′). We say that a base argument 𝛥 is a sub-argument of 𝛤 if 𝛥 ⊆ 𝛤 .
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𝔻1

𝔻2

𝔻3

Fig. 4. Containment between attack relations on base arguments. An arrow from 𝔻𝑖 to 𝔻𝑗 indicates that 𝔻𝑖 ⊆𝔻𝑗 .

Note that if 𝛤 and 𝛥 are base arguments, 𝛤 ∪ 𝛥 is not necessarily a base argument. Consider 𝛤 = {𝑝, 𝑝 → 𝑞} and 𝛥 = {𝑞}. Then 
{𝑝, 𝑞} ⊂ 𝛤 ∪𝛥 and 𝐶𝑛⊢({𝑝, 𝑞}) = 𝐶𝑛⊢(𝛤 ∪𝛥). Similarly, a maximal consistent subset of 𝛴 is not necessarily a base argument. However, 
if 𝛤 and 𝛥 are base arguments, then 𝛤 ∩ 𝛥 is a base argument. This follows from the following lemma:

Lemma 2. Given a logic (, ⊢) and a knowledge base 𝛴, if 𝛤 ⊆ 𝛴 is a base argument, so is any subset of 𝛤 .

Proof. Assume that 𝛥 ⊆ 𝛤 . Since 𝛤 is a base argument, 𝛤 is finite, consistent, and there does not exist 𝛤 ′ ⊂ 𝛤 such that 𝐶𝑛⊢(𝛤 ) =
𝐶𝑛⊢(𝛤 ′).

Assume that 𝛥 is inconsistent. Then 𝛥 ⊢ ⊥. By the monotonicity of ⊢, 𝛤 ⊢ ⊥, contradicting the fact that 𝛤 is consistent. Therefore, 
𝛥 is consistent.

Assume that there exists 𝛥′ ⊂ 𝛥 such that 𝐶𝑛⊢(𝛥) = 𝐶𝑛⊢(𝛥′). Since 𝛥′ ⊂ 𝛥 and 𝛥 ⊆ 𝛤 , 𝛥′ ∪ (𝛤 ⧵ 𝛥) ⊂ 𝛤 . Since 𝐶𝑛⊢(𝛥) = 𝐶𝑛⊢(𝛥′),

𝐶𝑛⊢(𝛥′ ∪ (𝛤 ⧵ 𝛥)) = 𝐶𝑛⊢(𝛥 ∪ (𝛤 ⧵ 𝛥)) = 𝐶𝑛⊢(𝛤 ),

which contradicts the fact that 𝛤 is a base argument. It follows that there does not exist 𝛥′ ⊂ 𝛥 such that 𝐶𝑛⊢(𝛥) = 𝐶𝑛⊢(𝛥′). □

Next we show that we can obtain a base argument from a premise-conclusion argument, and vice versa.

Lemma 3. Let (, ⊢) be an abstract logic and 𝛴 a knowledge base.

1. For any base argument 𝛤 , (𝛤 , 
⋀
𝛤 ) is a premise-conclusion argument.

2. For any premise-conclusion argument (𝛤 , 𝜑), 𝛤 is a base argument.

Proof. (1) It suffices to show that there does not exist 𝛤 ′ ⊂ 𝛤 such that 𝛤 ′ ⊢
⋀
𝛤 . We prove by contradiction and assume that 𝛤 ′ ⊢⋀

𝛤 . It follows that 𝐶𝑛⊢(𝛤 ) ⊆ 𝐶𝑛⊢(𝛤 ′). Since 𝛤 ′ ⊂ 𝛤 , by the monotonicity of ⊢, 𝐶𝑛⊢(𝛤 ′) ⊆ 𝐶𝑛⊢(𝛤 ). Therefore, 𝐶𝑛⊢(𝛤 ′) = 𝐶𝑛⊢(𝛤 ), 
contradicting the fact that 𝛤 is a base argument.

(2) It suffices to show that for any premise-conclusion argument (𝛤 , 𝜑), there does not exist 𝛤 ′ ⊂ 𝛤 such that 𝐶𝑛⊢(𝛤 ) = 𝐶𝑛⊢(𝛤 ′). 
It follows directly from the definition of premise-conclusion arguments. □

An attack relation on base arguments is represented by a function 𝔻 ∶𝐴𝑟𝑏(𝛴) ×𝐴𝑟𝑏(𝛴) → {0, 1}, where 𝐴𝑟𝑏(𝛴) is the set of base 
arguments on 𝛴. If 𝔻(𝛤 , 𝛥) = 1, we say that 𝛤 𝔻-attacks 𝛥. Now we define three attack relations on base arguments.

Definition 9. Given base arguments 𝛤 , 𝛥,

1. 𝛤 𝔻1-attacks 𝛥, if 𝛤 ⊢ ¬ 
⋀
𝛥.

2. 𝛤 𝔻2-attacks 𝛥, if there exists 𝜓 ∈ 𝛥 such that 𝛤 ⊢ ¬𝜓 .
3. 𝛤 𝔻3-attacks 𝛥, if there exists 𝛥′ ⊆ 𝛥 such that 𝛤 ⊢ ¬ 

⋀
𝛥′.

The inclusive relation between 𝔻1, 𝔻2 and 𝔻3 is shown in Fig. 4.

Definition 10. Given an abstract logic (, ⊢), a knowledge base 𝛴 and an attack function 𝔻, a base argumentation framework (BAF, 
for short) 𝔻

𝛴
is a pair (𝐴𝑟𝑏(𝛴), 𝔻), where 𝐴𝑟𝑏(𝛴) is the set of all base arguments on 𝛴, 𝔻 is a binary relation on 𝐴𝑟𝑏(𝛴) such that 

𝔻(𝛤 , 𝛥) = 1 iff (𝛤 , 𝛥) ∈𝔻.

Example 3. Let (, ⊢) be propositional logic, 𝛴 = {𝑝, ¬𝑝, 𝑞}. If 𝔻 =𝔻2, then the generated base argumentation framework 𝔻2
𝛴

is as 
7

follows:
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∅

{𝑝, 𝑞}

{¬𝑝, 𝑞}

{𝑝}

{¬𝑝}

{𝑞}

The complete extensions of 𝔻2
𝛴

are:

1 = {∅,{𝑞}},

2 = {∅,{𝑝},{𝑞},{𝑝, 𝑞}},

2 = {∅,{¬𝑝},{𝑞},{¬𝑝, 𝑞}}.

Unlike Example 2, all the arguments are shown in the figure.

Example 4. Let (, ⊢) be propositional logic and 𝛴 = {𝑝, 𝑞, 𝑝 → 𝑞, 𝑝 → ¬𝑞}. Let 𝔻 = 𝔻2. There are 16 subsets of 𝛴, but only 10 of 
them are base arguments: Since 𝑞 → (𝑝 → 𝑞) is a tautology in propositional logic, {𝑞} ⊢ 𝑝 → 𝑞 and hence {𝑞, 𝑝 → 𝑞}, {𝑝, 𝑞, 𝑝 → 𝑞}, 
{𝑞, 𝑝 → 𝑞, 𝑝 → ¬𝑞} and {𝑝, 𝑞, 𝑝 → 𝑞, 𝑝 → ¬𝑞} are not base arguments since they do not satisfy the minimality requirement; {𝑝, 𝑞, 𝑝 → ¬𝑞}
and {𝑝, 𝑝 → 𝑞, 𝑝 → ¬𝑞} are not base arguments since they are inconsistent.

The base argumentation framework 𝔻2
𝛴

is as follows, where an arrow pointing to an ellipse indicates attacks on each argument 
in the ellipse. For example, since {𝑝 → ¬𝑞, 𝑝 → 𝑞} ⊢ ¬𝑝, we have {𝑝 → ¬𝑞, 𝑝 → 𝑞} attacks {𝑝, 𝑝 → 𝑞}, {𝑝, 𝑞} and {𝑝}.

∅

{𝑝→ 𝑞}

{𝑞}

{𝑝, 𝑝→ 𝑞}

{𝑝, 𝑞}

{𝑝}

{𝑝→ ¬𝑞, 𝑝}

{𝑝→ ¬𝑞}

{𝑝→ ¬𝑞, 𝑞}

{𝑝→ ¬𝑞, 𝑝→ 𝑞}

The complete extensions in 𝔻2
𝛴

are as follows:

{∅},

{∅,{𝑝},{𝑝→ ¬𝑞, 𝑝},{𝑝→ ¬𝑞}},

{∅,{𝑝→ 𝑞},{𝑞},{𝑝, 𝑝→ 𝑞},{𝑝, 𝑞},{𝑝}},

{∅,{𝑝→ 𝑞},{𝑞},{𝑝→ ¬𝑞},{𝑝→ ¬𝑞, 𝑞},{𝑝→ ¬𝑞, 𝑝→ 𝑞}}.

4. Extensional equivalence

Comparing base argumentation with premise-conclusion argumentation, it is evident that base argumentation has the advantage 
of simplicity in formal representation of knowledge. As a more concise tool, if base argumentation has the same function as premise-
conclusion argumentation to some extent, it will be more scientifically meaningful. As formal argumentation aims to differentiate 
acceptable arguments from unacceptable ones, we evaluate whether base argumentation and premise-conclusion argumentation have 
the same function from this perspective.

Assume as given an abstract logic (, ⊢) and a knowledge base 𝛴. Fix an attack relation 𝔻 on base arguments and an attack 
8

function 𝐃 on premise-conclusion arguments. Then we have a BAF 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) and a PAF 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃). Consider an 
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extensional semantics 𝑋. The following statement illustrates our intuition about when two argumentation systems have the same 
ability in discerning acceptable arguments: If a BAF 𝔻

𝛴
and a PAF 𝐅𝐃

𝛴
accept the ‘same’ arguments, then for each 𝑋-extension  in 

 , there exists an 𝑋-extension 𝐒 in 𝐅 such that  and 𝐒 are the ‘same’, and vice versa.
What remains to be done is to define when a set of base arguments and a set of premise-conclusion arguments are the ‘same’.
Note that each 𝑋-extension in 𝔽 is of the form

 = {𝛤1,… , 𝛤𝑚},

and each 𝑋-extension in 𝐅 is of the form

𝐒 = {(𝛤 ′
1 , 𝜑1),… , (𝛤 ′

𝑛,𝜑𝑛)}.

If  and 𝐒 are the ‘same’, then being the same can not be defined in terms of set-theoretical identity. Recall that our slogan for 
base argumentation (the logical omniscience hypothesis) is that each argument can be represented by its premises. Let us define an 
operation (.)∙ that collects all the premise sets in 𝐒, and an operation (.)∙ that builds all possible premise-conclusion arguments from 
 . If 𝐒∙ =  and ∙ = 𝐒, by the assumption that each argument can be represented by its premises, we can say that  and 𝐒 are the 
same.

Now we have an informal definition for a BAF and a PAF to have the same ability in discerning acceptable arguments. In this 
case, we say that they are 𝑋-extensionally equivalent. The remaining task in this section is to formalize the above ideas.

Transformation functions First we define operations (.)∙ and (.)∙. They are called transformation functions.

Definition 11. [Transformation functions] Let (, ⊢) be an abstract logic and 𝛴 a knowledge base. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF, 

and 𝐅𝐃
𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF. Let  ⊆𝐴𝑟𝑏(𝛴), 𝐒 ⊆𝐴𝑟𝑝(𝛴).

1. Define a function (.)∙ ∶ (𝐴𝑟𝑏(𝛴)) → (𝐴𝑟𝑝(𝛴)) as follows:

∙ ∶= {(𝛤 ,𝜑) ∣ 𝛤 ∈  and (𝛤 ,𝜑) ∈𝐴𝑟𝑝(𝛴)}.

2. Define a function (.)∙ ∶ (𝐴𝑟𝑝(𝛴)) → (𝐴𝑟𝑏(𝛴)) as follows:

𝐒∙ ∶= {𝛤 ∣ ∃𝜑, (𝛤 ,𝜑) ∈ 𝐒}.

For a set of base arguments  , ∙ is the set of premise-conclusion arguments that can be generated by these base arguments; for 
a set of premise-conclusion arguments 𝐒, 𝐒∙ is the set of premises of premise-conclusion arguments in 𝐒. By Lemma 3, each element 
in 𝐒∙ is a base argument.

Functions (.)∙ and (.)∙ reflect the logical omniscience hypothesis from two perspectives: the former reflects that if one knows a set 
of formulas, then he/she knows all its logical consequences, and the latter reflects that for a set of premise-conclusion arguments, an 
agent only needs to know their premises.

𝑋-extensional equivalence Now we define the notion of 𝑋-extensional equivalence.
Given a BAF 𝔻

𝛴
and a PAF 𝐅𝐃

𝛴
, for extension semantics 𝑋, we use 𝑋 (𝔻

𝛴
) for the set of 𝑋-extensions in 𝔻

𝛴
and 𝐄𝑋 (𝐅𝐃

𝛴
) for 

the set of 𝑋-extension in 𝐅𝐃
𝛴

. We adopt the following abbreviations: ‘co’ for ‘complete’, ‘st’ for ‘stable’, ‘gr’ for ‘grounded’, ‘pr’ for 
‘preferred’, ‘ss’ for ‘semi-stable’, ‘id’ for ‘ideal’ and ‘ea’ for ‘eager’. For example, 𝑐𝑜(𝔻

𝛴
) is the set of complete extensions in 𝔻

𝛴
.

Definition 12. Given a logic (, ⊢) and a knowledge base 𝛴. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF. 𝔻

𝛴

and 𝐅𝐃
𝛴

are said to be 𝑋-extensionally equivalent, if

1. When restricted to 𝑋 (𝔻
𝛴
), (.)∙ is a bijection from 𝑋 (𝔻

𝛴
) to 𝐄𝑋 (𝐅𝐃

𝛴
).

2. When restricted to 𝐄𝑋 (𝐅𝐃
𝛴
), (.)∙ is a bijection from 𝐄𝑋 (𝐅𝐃

𝛴
) to 𝑋 (𝔻

𝛴
).

If a BAF and a PAF are 𝑋-extensionally equivalent, they have the same number of 𝑋-extensions. In addition, their extensions are 
logically related in terms of content due to the logical connotation of (.)∙ and (.)∙.

Example 5. In Examples 2 and 3, (, ⊢) is propositional logic and 𝛴 is {𝑝, ¬𝑝, 𝑞}. Let 𝐃 = 𝐃𝐷𝐷 and 𝔻 = 𝔻2. By the analysis in the 
above examples, the complete extensions in 𝐅𝐃𝐷𝐷

𝛴
are

𝐒1 = {𝐴 ∣ S(𝐴) = ∅,{𝑞}},

𝐒2 = {𝐴 ∣ S(𝐴) = ∅,{𝑞},{𝑝} or {𝑝, 𝑞}},
9

𝐒3 = {𝐴 ∣ S(𝐴) = ∅,{𝑞},{¬𝑝} or {¬𝑝, 𝑞}}.
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The complete extensions in 𝔻2
𝛴

are 1 = {∅, {𝑞}}, 2 = {∅, {𝑝}, {𝑞}, {𝑝, 𝑞}}, 2 = {∅, {¬𝑝}, {𝑞}, {¬𝑝, 𝑞}}.
It follows that

𝐒∙1 = 1 (1)∙ = 𝐒1
𝐒∙2 = 2 (2)∙ = 𝐒2
𝐒∙3 = 3 (3)∙ = 𝐒3.

Hence, (.)∙ ∶ 𝐄𝑐𝑜(𝐅
𝐃𝐷𝐷
𝛴

) → 𝑐𝑜(
𝔻2
𝛴

) and (.)∙ ∶ 𝑐𝑜(
𝔻2
𝛴

) → 𝐄𝑐𝑜(𝐅
𝐃𝐷𝐷
𝛴

) are bijections. It follows that 𝔻2
𝛴

and 𝐅𝐃𝐷𝐷
𝛴

are complete-
extensionally equivalent.

5. Bisimulation

With the notion of extensional equivalence defined, an important question is under what conditions a BAF and a PAF are exten-
sionally equivalent. This section defines the notion of bisimulation, and the next section shows that bisimulation implies extensional 
equivalence.

The notion of bisimulation between a BAF and a PAF is similar to the notion of bisimulation in transition systems which describes 
the behavioral equivalences between transition systems (see e.g., Section 2.3.4 in [21]). Given a labeled transition system (𝑄, 𝐴, →), 
where 𝑄 is a nonempty set of states, 𝐴 is a countable set of labels and →⊆ 𝑄 × 𝐴 ×𝑄 is the transition relation, a bisimulation is a 
binary relation 𝑅 ⊆ 𝑆 × 𝑆 such that if (𝑞1, 𝑞2) ∈𝑅, then for all 𝜇 ∈𝐴,

(1) for all 𝑞′1 such that 𝑞1
𝜇
←←←←←←←→ 𝑞′1, there exists a state 𝑞′2 such that 𝑞2

𝜇
←←←←←←←→ 𝑞′2 and (𝑞′1, 𝑞

′
2) ∈𝑅;

(2) for all 𝑞′2 such that 𝑞2
𝜇
←←←←←←←→ 𝑞′2, there exists a state 𝑞′1 such that 𝑞1

𝜇
←←←←←←←→ 𝑞′1 and (𝑞′1, 𝑞

′
2) ∈𝑅.

Now we give the definition of bisimulation between a BAF and a PAF.

Definition 13. [Bisimulation] Let (, ⊢) be an abstract logic and 𝛴 a knowledge base. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
=

(𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF. 𝔻
𝛴

and 𝐅𝐃
𝛴

are said to be bisimilar, if the following conditions are satisfied:

(1) For 𝛤 , 𝛥 ∈𝐴𝑟𝑏(𝛴), if 𝛤 𝔻-attacks 𝛥, then there exists (𝛤 ′, 𝜑), (𝛥, 𝜓) ∈𝐴𝑟𝑝(𝛴) such that 𝛤 ′ ⊆ 𝛤 and (𝛤 ′, 𝜑) 𝐃-attacks (𝛥, 𝜓).
(2) For (𝛤 , 𝜑), (𝛥, 𝜓) ∈𝐴𝑟𝑝(𝛴), if (𝛤 , 𝜑) 𝐃-attacks (𝛥, 𝜓), then 𝛤 𝔻-attacks 𝛥.
(3) 𝔻 is monotonic: if 𝔻(𝛤 , 𝛥) = 1 and 𝛥 ⊆𝛺 ∈𝐴𝑟𝑏(𝛴), then 𝔻(𝛤 , 𝛺) = 1.
(4) 𝐃 is p-monotonic: if 𝐃(𝐴, 𝐵) = 1 and S(𝐵) ⊆ S(𝐶), then 𝐃(𝐴, 𝐶) = 1.

Condition (2) is well-defined because the premise set of a premise-conclusion argument is a base argument (Lemma 3).
Bisimulation imposes specific requirements on 𝔻 and 𝐑𝐃. Condition (1) says that 𝐑𝐃 is able to simulate 𝔻 and condition (2) 

says that 𝔻 is able to simulate 𝐑𝐃. For an attack function 𝔻 on base arguments, being monotonic means that if 𝛤 𝔻-attacks 𝛥, then 
𝛤 𝔻-attacks any base argument that is a superset of 𝛥. For an attack function 𝐃 on premise-conclusion arguments, being p-monotonic 
(short for ‘monotonic on premises’) means that if (𝛤 , 𝜑) 𝔻-attacks (𝛥, 𝜓), then (𝛤 , 𝜑) 𝐃-attacks any premise-conclusion argument 
whose premise set is a superset of 𝛥. It implies that whether a premise-conclusion argument is 𝐃-attacked is completely determined 
by its premise set. Conditions (3) and (4) ensure the property of closure under sub-arguments (Lemma 4), which is frequently used 
in subsequent proofs. For example, it is used to show that for any 𝐒 ⊆𝐴𝑟𝑝(𝛴),

if 𝐒 is a complete extension in 𝐅𝐃
𝛴

, then (𝐒∙)∙ = 𝐒 (Item (4) in Lemma 6),

which implies that (.)∙ is a surjection if restricted to complete extensions (Proposition 4).

Example 6. The PAF 𝐅𝐃𝐷𝐷
𝛴

in Example 2 and the BAF 𝔻2
𝛴

in Example 3 are bisimilar. See Proposition 2 for a proof.

The following proposition shows that some frameworks with attack relations in Definitions 6 and 9 are bisimilar.

Proposition 2. Let (, ⊢) be a logic and 𝛴 a knowledge base.

(1) 
𝔻1
𝛴

and 𝐅𝐃𝐷
𝛴

are bisimilar.

(2) 
𝔻2
𝛴

and 𝐅𝐃𝐷𝐷
𝛴

are bisimilar.

(3) 
𝔻2
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

are bisimilar.

(4) 
𝔻3
𝛴

and 𝐅𝐃𝑈
𝛴

are bisimilar.
10

Proof. (1) Assumes that 𝛤 𝔻1-attacks 𝛥. Then 𝛤 ⊢ ¬ 
⋀
𝛥.



Artificial Intelligence 336 (2024) 104203J. Chen, B. Liao and L. van der Torre

Let 𝛤 ′ be a minimal consistent subset of 𝛤 such that 𝛤 ′ ⊢ ¬ 
⋀
𝛥. Therefore, premise-conclusion argument (𝛤 ′, ¬ 

⋀
𝛥) 𝐃𝐷-attacks 

(𝛥, 
⋀
𝛥).

Assume that (𝛤 , 𝜑) 𝐃𝐷-attacks (𝛥, 𝜓). Then 𝜑 ⊢ ¬ 
⋀
𝛥. Since (𝛤 , 𝜑) is a premise-conclusion argument, 𝛤 ⊢ 𝜑. By the transitivity 

of ⊢, 𝛤 ⊢ ¬ 
⋀
𝛥. It follows that 𝛤 𝔻1-attacks 𝛥.

It is straightforward that 𝔻1 is monotonic and that 𝐃𝐷 is p-monotonic.
(2) Since 𝛤 𝔻2- attacks 𝛥, there exists 𝜓 ∈ 𝛥 such that 𝛤 ⊢ ¬𝜓 . Let 𝛤 ′ be a minimal consistent subset of 𝛤 such that 𝛤 ′ ⊢ ¬𝜓 . It 

follows that premise-conclusion argument (𝛤 ′, ¬𝜓) 𝐃𝐷𝐷-attacks (𝛥, 
⋀
𝛥).

Assume that (𝛤 , 𝜑) 𝐃𝐷𝐷-attacks (𝛥, 𝜓). Then there exists 𝜑 ∈ 𝛥 such that 𝜑 ⊢ ¬𝜑. By the transitivity of ⊢, 𝛤 ⊢ ¬𝜑. Therefore, 𝛤
𝔻2-attacks 𝛥.

It is straightforward that 𝔻2 is monotonic and that 𝐃𝐷𝐷 is p-monotonic.
(3) Assume that 𝛤 𝔻2-attacks 𝛥. Then there exists 𝜓 ∈ 𝛥 such that 𝛤 ⊢ ¬𝜓 . Let 𝛤 ′ be a minimal consistent subset of 𝛤 such that 

𝛤 ′ ⊢ ¬𝜓 . It follows that premise-conclusion argument (𝛤 ′, ¬𝜓) 𝐃𝐷𝑈 -attacks (𝛥, 
⋀
𝛥).

Assume that (𝛤 , 𝜑) 𝐃𝐷𝑈 -attacks (𝛥, 𝜓). Then there exists 𝜑 ∈ 𝛥 such that 𝜑 ≡ ¬𝜑. By the transitivity of ⊢, 𝛤 ⊢ ¬𝜑. Therefore, 𝛤
𝔻2-attacks 𝛥.

It is straightforward that 𝔻2 is monotonic and that 𝐃𝐷𝑈 is p-monotonic.
(4) Assume that 𝛤 𝔻3-attacks 𝛥. Then there exists 𝛥′ ⊆ 𝛥 such that 𝛤 ⊢ ¬ 

⋀
𝛥′. Let 𝛤 ′ be a minimal consistent subset of 𝛤 such 

that 𝛤 ′ ⊢ ¬ 
⋀
𝛥′. It follows that premise-conclusion argument (𝛤 ′, ¬ 

⋀
𝛥′) 𝐃𝑈 -attacks (𝛥, 

⋀
𝛥).

Assume that (𝛤 , 𝜑) 𝐃𝑈 -attacks (𝛥, 𝜓). Then there exists 𝛥′ ⊆ 𝛥 such that 𝜑 ≡ ¬ 
⋀
𝛥′. By the monotonicity of ⊢, 𝛤 ⊢ ¬ 

⋀
𝛥′. 

Therefore, 𝛤 𝔻3-attacks 𝛥.
It is straightforward that 𝔻3 is monotonic and that 𝐃𝑈 is p-monotonic. □

Non-monotonicity prevents bisimilarity for all other types of attack. For 𝔻1
𝛴

and 𝐅𝐃𝐶𝑈
𝛴

, since 𝐃𝐶𝑈 is not p-monotonic, they are 
not bisimilar, though they satisfy conditions (1)-(3). For the same reason, 𝔻1

𝛴
and 𝐅𝐃𝑅

𝛴
are not bisimilar, and 𝔻1

𝛴
and 𝐅𝐃𝐷𝑅

𝛴
are not 

bisimilar.
Items (2) and (3) in Proposition 2 show that it is possible that a BAF simulates more than one PAF.

6. Bisimulation implies extensional equivalence

This section shows that bisimulation between a BAF 𝔻
𝛴

and a PAF 𝐅𝐃
𝛴

implies 𝑋-extensional equivalence, for 𝑋 ∈ {𝑐𝑜, 𝑠𝑡, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠, 
𝑖𝑑, 𝑒𝑎}. This is achieved by showing that (.)∙ and (.)∙ satisfies the following conditions:

(1) for each 𝑋-extension  in 𝔻
𝛴

, ∙ is an 𝑋-extension in 𝐅𝐃
𝛴

;

(2) for each 𝑋-extension 𝐒 in 𝐅𝐃
𝛴

, 𝐒∙ is an 𝑋-extension in 𝔻
𝛴

;
(3) (.)∙ and (.)∙ are bijections when restricted 𝑋-extensions.

For the results in this section, it is assumed as given an abstract logic (, ⊢) and a knowledge base 𝛴. Moreover, when the attack 
relation is clear from the context, we remove the prefix 𝐃 or 𝔻 for simplicity. For example, we write “premise-conclusion argument 
(𝛤 , 𝜑) 𝐃-attacks (𝛥, 𝜓)” as “premise-conclusion argument (𝛤 , 𝜑) attacks (𝛥, 𝜓)” and write “base argument 𝛤 𝔻-attacks 𝛥” as “base 
argument 𝛤 attacks 𝛥”.

6.1. Key lemmas

This subsection proves lemmas that will be frequently used. The first one shows that complete extensions in bisimilar frames are 
closed under sub-arguments.

Lemma 4. [Closure under sub-arguments] Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are 

bisimilar.

(1) For a complete extension 𝐒 in 𝐅𝐃
𝛴

, if (𝛤 , 𝜑) ∈ 𝐒, (𝛥, 𝜓) ∈𝐴𝑟𝑝(𝛴) and 𝛥 ⊆ 𝛤 , then (𝛥, 𝜓) ∈ 𝐒.

(2) For a complete extension  in 𝔻
𝛴

, if 𝛤 ∈  and 𝛥 ⊆ 𝛤 , then 𝛥 ∈  .

Proof. (1) Since 𝐒 is a complete extension, to show that (𝛥, 𝜓) ∈ 𝐒, it suffices to show that 𝐒 defends (𝛥, 𝜓). Let (𝛯, 𝜑) be a premise-
conclusion argument that attacks (𝛥, 𝜓). Since 𝐃 is p-monotonic and 𝛥 ⊆ 𝛤 , (𝛯, 𝜑) attacks (𝛤 , 𝜑).

Since (𝛤 , 𝜑) ∈ 𝐒 and 𝐒 is complete, 𝐒 attacks (𝛯, 𝜑). Therefore, 𝐒 defends (𝛥, 𝜓).
(2) By Lemma 2, 𝛥 is a base argument. It suffices to show that  defends 𝛥. Assume that a base argument 𝛺 attacks 𝛥. Since 𝔻 is 

monotonic and 𝛥 ⊆ 𝛤 , 𝛺 attacks 𝛤 . Since 𝛤 ∈  and  is a complete extension,  attacks 𝛺. □

The following lemma is a direct consequence of p-monotonicity and condition (1) in the definition of bisimulation (Definition 13).
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Lemma 5. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar.
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Let 𝛤 , 𝛥 ∈𝐴𝑟𝑏(𝛴). If 𝛤 𝔻-attacks 𝛥, then there exists a premise-conclusion argument (𝛤 ′, 𝜑) with 𝛤 ′ ⊆ 𝛤 which 𝐃-attacks any premise-

conclusion argument whose premise set is 𝛥.

Proof. Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar and 𝛤 𝔻-attacks 𝛥, by definition, there exist premise-conclusion arguments (𝛤 ′, 𝜑) and (𝛥, 𝜓), 
where 𝛤 ′ ⊆ 𝛤 , such that (𝛤 ′, 𝜑) 𝐃-attacks (𝛥, 𝜓). Since 𝐃 is p-monotonic, (𝛤 ′, 𝜑) 𝐃-attacks any premise-conclusion argument whose 
premise set is 𝛥. □

The following lemma is about the interaction of functions (.)∙ , (.)∙ and other operations.

Lemma 6. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar. Let  ,  ′ ⊆ 𝐴𝑟𝑏(𝛴) and 

𝐒, 𝐒′ ⊆𝐴𝑟𝑝(𝛴).

(1) If  ⊆  ′, then ∙ ⊆  ′
∙ .

(2) If 𝐒 ⊆ 𝐒′, then 𝐒∙ ⊆ (𝐒′)∙.
(3) (∙)∙ =  .

(4) If 𝐒 is a complete extension in 𝐅𝐃
𝛴

, then (𝐒∙)∙ = 𝐒.

(5) ( ∪  ′)∙ = ∙ ∪ ( ′)∙.
(6) (𝐒 ∪ 𝐒′)∙ = 𝐒∙ ∪ (𝐒′)∙.
(7) If  is a complete extension in 𝔻

𝛴
, then (∙)+ = (+)∙.

(8) If 𝐒 is a complete extension in 𝐅𝐃
𝛴

, then (𝐒+)∙ = (𝐒∙)+.

(9) For a set 𝑐 of complete extensions in 𝔻
𝛴

, (
⋂

∈𝑐 )∙ =
⋂

∈𝑐 ∙.

(10) For a set 𝐄𝑐 of complete extensions in 𝐅𝐃
𝛴

, (
⋂

𝐒∈𝐄𝑐 𝐒)
∙ =

⋂
𝐒∈𝐄𝑐 𝐒

∙.

Proof. Items (1) and (2) follow directly from the definitions.
(3) By definition,

(∙)∙ = {𝛤 ∣ ∃𝜑, (𝛤 ,𝜑) ∈𝐴𝑟𝑝(𝛴) and 𝛤 ∈ }.

It follows from the definition that (∙)∙ ⊆  .
For the other direction, assume that 𝛤 ∈  . By Lemma 3, (𝛤 , 

⋀
𝛤 ) is a premise-conclusion argument. Therefore, 𝛤 ∈ (∙)∙.

(4) By definition,

(𝐒∙)∙ = {(𝛤 ,𝜑) ∣ (𝛤 ,𝜑) ∈𝐴𝑟𝑝(𝛴) and ∃𝜓(𝛤 ,𝜓) ∈ 𝐒}.

It follows from the definition that 𝐒 ⊆ (𝐒∙)∙.
Assume that (𝛤 , 𝜑) ∈ (𝐒∙)∙. Then (𝛤 , 𝜑) is a premise-conclusion argument and there exists 𝜓 such that (𝛤 , 𝜓) ∈ 𝐒.
By Lemma 4, (𝛤 , 𝜑) ∈ 𝐒.
Items (5) and (6) follow directly from the definition.
(7) By definition,

(∙)+ = {(𝛤 ,𝜑) ∣ ∙ attacks (𝛤 ,𝜑)},

(+)∙ = {(𝛤 ,𝜑) ∣ (𝛤 ,𝜑) ∈𝐴𝑟𝑝(𝛴) and 𝛤 ∈ +}.

Assume that (𝛤 , 𝜑) ∈ (∙)+. Then ∙ attacks (𝛤 , 𝜑). Then there exists (𝛥, 𝜓) ∈ ∙ that attacks (𝛤 , 𝜑). Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, 
𝛥 attacks 𝛤 . Since (𝛥, 𝜓) ∈ ∙, 𝛥 ∈  . It follows that 𝛤 ∈ +. Therefore, (𝛤 , 𝜑) ∈ (+)∙. Hence, (∙)+ ⊆ (+)∙.

Assume that (𝛤 , 𝜑) ∈ (+)∙. Then 𝛤 ∈ +. It follows that there exists 𝛥 ∈  that attacks 𝛤 . Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, by 
Lemma 5, there exists premise-conclusion argument (𝛥′, 𝜑) that attacks (𝛤 , 𝜑), where 𝛥′ ⊆ 𝛥.

Since 𝛥 ∈  , by Lemma 4, 𝛥′ ∈  . Therefore, (𝛥′, 𝜑) ∈ ∙. It follows that (𝛤 , 𝜑) ∈ (∙)+. Hence, (+)∙ ⊆ (∙)+.
(8) By definition,

(𝐒+)∙ = {𝛤 ∣ there exists 𝜑 such that (𝛤 ,𝜑) ∈ 𝐒+},

(𝐒∙)+ = {𝛤 ∣ 𝐒∙ attacks 𝛤 }.

Assume that 𝛤 ∈ (𝐒+)∙. Then there exists 𝜑 such that (𝛤 , 𝜑) ∈ 𝐒+. It follows that there exists (𝛥, 𝜓) ∈ 𝐒 that attacks (𝛤 , 𝜑). Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, 𝛥 attacks 𝛤 . Since (𝛥, 𝜓) ∈ 𝐒, 𝛥 ∈ 𝐒∙. Therefore, 𝐒∙ attacks 𝛤 .
Assume that 𝛤 ∈ (𝐒∙)+. Then 𝐒∙ attacks 𝛤 . Then there exists 𝛥 ∈ 𝐒∙ that attacks 𝛤 .
By Lemma 3, (𝛤 , 

⋀
𝛤 ) is a premise-conclusion argument. Since 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar, by Lemma 5, there exists premise-

conclusion argument (𝛥′, 𝜑) that attacks (𝛤 , 
⋀
𝛤 ), where 𝛥′ ⊆ 𝛥.

Since 𝛥 ∈ 𝐒∙, there exists 𝜓 such that (𝛥, 𝜓) ∈ 𝐒.
12

By Lemma 4, (𝛥′, 𝜑) ∈ 𝐒. Since (𝛥′, 𝜑) attacks (𝛤 , 
⋀
𝛤 ), (𝛤 , 

⋀
𝛤 ) ∈ 𝐒+. Therefore, 𝛤 ∈ (𝐒+)∙.
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(9) By definition,

(
⋂
∈𝑐

)∙ = {(𝛤 ,𝜑) ∣ (𝛤 ,𝜑) ∈𝐴𝑟𝑝(𝛴) and 𝛤 ∈
⋂
∈𝑐

},

⋂
∈𝑐

∙ = {(𝛤 ,𝜑) ∣ (𝛤 ,𝜑) ∈𝐴𝑟𝑝(𝛴) and ∀ ∈ 𝑐 , 𝛤 ∈ }.

It follows directly from the definition that (
⋂

∈𝑐 )∙ =
⋂

∈𝑐 ∙.
(10) By definition,

(
⋂
𝐒∈𝐄𝑐

𝐒)∙ = {𝛤 ∣ there exists 𝜑 such that (𝛤 ,𝜑) ∈
⋂
𝐒∈𝐄𝑐

𝐒},

⋂
𝐒∈𝐄𝑐

𝐒∙ = {𝛤 ∣ for any 𝐒 ∈ 𝐄𝑐 , there exists 𝜑 such that (𝛤 ,𝜑) ∈ 𝐒}.

It follows from the definition that (
⋂

𝐒∈𝐄𝑐 𝐒)
∙ ⊆

⋂
𝐒∈𝐄𝑐 𝐒

∙.

Assume that 𝛤 ∈
⋂

𝐒∈𝐄𝑐 𝐒
∙. Then for any 𝐒 ∈ 𝐄𝑐 , there exists 𝜑𝐒 such that (𝛤 , 𝜑𝐒) ∈ 𝐒. Choose an arbitrary 𝐒𝑖.

By Lemma 4, for any 𝐒 ∈ 𝐄𝑐 , (𝛤 , 𝜑𝐒𝑖 ) ∈ 𝐒. It follows that 𝛤 ∈ (
⋂

𝐒∈𝐄𝑐 𝐒)
∙. □

6.2. Complete extensions

This subsection shows that for bisimilar frames, (.)∙ and (.)∙ are bijections when restricted to complete extensions.
The following proposition shows that (.)∙ and (.)∙ preserve complete extensions between bisimilar frames.

Proposition 3. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar.

1. If  is a complete extension in 𝔻
𝛴

, then ∙ is a complete extension in 𝐅𝐃
𝛴

.

2. If 𝐒 is a complete extension in 𝐅𝐃
𝛴

, then 𝐒∙ is a complete extension in 𝔻
𝛴

.

Proof. (1) Assume that  is a complete extension. To show that ∙ is a complete extension, we have to show that ∙ is conflict-free, 
defends each of its elements and contains each argument it defends.

– First we show that ∙ is conflict-free. We prove by contradiction and assume that there exist premise-conclusion arguments (𝛤 , 𝜑)
and (𝛥, 𝜓) ∈ ∙ such that (𝛤 , 𝜑) attacks (𝛥, 𝜓). Since 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar, 𝛤 attacks 𝛥.

Since (𝛤 , 𝜑), (𝛥, 𝜓) ∈ ∙, 𝛤 , 𝛥 ∈  , which contradicts the fact that  is conflict-free.
– Next we show that ∙ defends each of its elements. Let (𝛤 , 𝜑) ∈ ∙ and assume that (𝛥, 𝜓) attacks (𝛤 , 𝜑). Since 𝔻

𝛴
and 𝐅𝐃

𝛴
are 

bisimilar, 𝛥 attacks 𝛤 .
Since (𝛤 , 𝜑) ∈ ∙, 𝛤 ∈  . Since  is a complete extension, there exists 𝛥′ ∈  such that 𝛥′ attacks 𝛥.
Since 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar, by Lemma 5, there exists a premise-conclusion argument (𝛥′′, 𝜑) that attacks (𝛥, 𝜓), where 

𝛥′′ ⊆ 𝛥′.
By Lemma 3, (𝛥′, 

⋀
𝛥′) is a premise-conclusion argument. Since 𝛥′ ∈  , (𝛥′, 

⋀
𝛥′) ∈ ∙. Since 𝛥′′ ⊆ 𝛥′, by Lemma 4, (𝛥′′, 𝜑) ∈ ∙. 

It follows that ∙ attacks (𝛥, 𝜓).
– Let (𝛤 , 𝜑) be an argument defended by ∙. To show that (𝛤 , 𝜑) ∈ ∙, it suffices to show that 𝛤 ∈  . Since  is a complete extension, 

we show that 𝛤 ∈  by proving that  defends 𝛤 . Let 𝛥 be a base argument that attacks 𝛤 .
Since 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar, by Lemma 5, there exists a premise-conclusion argument (𝛥′, 𝜑) that attacks (𝛤 , 𝜑), where 

𝛥′ ⊆ 𝛥.
Since (𝛤 , 𝜑) is defended by ∙, there exists (𝛺, 𝜑′) ∈ ∙ that attacks (𝛥′, 𝜑). Since 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar, 𝛺 attacks 𝛥′ and 𝔻

is monotonic. Since 𝛥′ ⊆ 𝛥, 𝛺 attacks 𝛥.
Since (𝛺, 𝜑′) ∈ ∙, 𝛺 ∈  . Therefore,  defends 𝛤 .

(2) Assume that 𝐒 is a complete extension. To show that 𝐒∙ is a complete extension, we have to show that 𝐒∙ is conflict-free, 
defends each of its elements and contains each argument it defends.

– We first show that 𝐒∙ is conflict-free. We prove by contradiction and assume that there exist 𝛤 , 𝛥 ∈ 𝐒∙ such that 𝛤 attacks 𝛥. Since 
𝛥 ∈ 𝐒∙, there exists 𝜓 such that (𝛥, 𝜓) ∈ 𝐒.

Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, by Lemma 5, there exists a premise-conclusion argument (𝛤 ′, 𝜑) that attacks (𝛥, 𝜓), where 
𝛤 ′ ⊆ 𝛤 .

Since 𝛤 ∈ 𝐒∙, there exists 𝜑 such that (𝛤 , 𝜑) ∈ 𝐒. By Lemma 4, (𝛤 ′, 𝜑) ∈ 𝐒.
Since (𝛤 ′, 𝜑) attacks (𝛥, 𝜓) and they belong to 𝐒, we have a contradiction against the fact that 𝐒 is conflict-free.

– Then we show that 𝐒∙ defends each of its elements. Let 𝛤 ∈ 𝐒∙ and assume that 𝛥 attacks 𝛤 . Since 𝛤 ∈ 𝐒∙, there exists 𝜑 such that 
13

(𝛤 , 𝜑) ∈ 𝐒.
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Since 𝛥 attacks 𝛤 and 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, by Lemma 5, there exists a premise-conclusion argument (𝛥′, 𝜑) that attacks 
(𝛤 , 𝜑), where 𝛥′ ⊆ 𝛥.

Since 𝐒 is a complete extension, there exists (𝛺, 𝜑′) ∈ 𝐒 that attacks (𝛥′, 𝜑). Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, 𝛺 attacks 𝛥′ and 
𝔻 is monotonic. Since 𝛥′ ⊆ 𝛥, 𝛺 attacks 𝛥.

Since (𝛺, 𝜑′) ∈ 𝐒, 𝛺 ∈ 𝐒∙. Therefore, 𝐒∙ defends 𝛤 .
– Let 𝛤 be an argument defended by 𝐒∙. To show that 𝛤 ∈ 𝐒∙, since (𝛤 , 

⋀
𝛤 ) is a premise-conclusion argument (Lemma 3), it suffices 

to show that (𝛤 , 
⋀
𝛤 ) ∈ 𝐒. Since 𝐒 is a complete extension, it suffices to show that 𝐒 defends (𝛤 , 

⋀
𝛤 ). Let (𝛥, 𝜓) attack (𝛤 , 

⋀
𝛤 ). 

Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, 𝛥 attacks 𝛤 . Since 𝐒∙ defends 𝛤 , there exists 𝛺 ∈ 𝐒∙ that attacks 𝛥.

Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, by Lemma 5, there exists a premise-conclusion argument (𝛺′, 𝜑) that attacks (𝛥, 𝜓), where 
𝛺′ ⊆𝛺.

Since 𝛺 ∈ 𝐒∙, there exists 𝜑 such that (𝛺, 𝜑) ∈ 𝐒. Since 𝛺′ ⊆𝛺, by Lemma 4, (𝛺′, 𝜑) ∈ 𝐒. Therefore, 𝐒 defends (𝛤 , 
⋀
𝛤 ). □

Recall that 𝑐𝑜(𝔻
𝛴
) is the set of complete extensions in 𝔻

𝛴
and that 𝐄𝑐𝑜(𝐅𝐃

𝛴
) is the set of complete extensions in 𝐅𝐃

𝛴
.

The following proposition shows that for bisimilar frames, (.)∙ and (.)∙ are bijections when restricted to complete extensions.

Proposition 4. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar.

1. (.)∙ ∶ 𝑐𝑜(𝔻
𝛴
) → 𝐄𝑐𝑜(𝐅𝐃

𝛴
) is a bijection.

2. (.)∙ ∶ 𝐄𝑐𝑜(𝐅𝐃
𝛴
) → 𝑐𝑜(𝔻

𝛴
) is a bijection.

Proof. (1) By Proposition 3, (.)∙ ∶ 𝑐𝑜(𝔻
𝛴
) → 𝐄𝑐𝑜(𝐅𝐃

𝛴
) is well-defined as a function. We first show that (.)∙ is an injection. Let  ,  ′ ∈

𝑐𝑜(𝔻
𝛴
) such that  ≠  ′. Without loss of generality, assume that 𝛤 ∈  and 𝛤 ∉  ′. By Lemma 3, (𝛤 , 

⋀
𝛤 ) is a premise-conclusion 

argument. By definition, (𝛤 , 
⋀
𝛤 ) ∈ ∙ and (𝛤 , 

⋀
𝛤 ) ∉  ′

∙ . Therefore, ∙ ≠  ′
∙ .

Now we show that (.)∙ is a surjection. Let 𝐒 ∈ 𝐄𝑐𝑜(𝐅𝐃
𝛴
). By Lemma 6, (𝐒∙)∙ = 𝐒. Therefore, (.)∙ is a surjection.

(2) By Proposition 3, (.)∙ ∶ 𝐄𝑐𝑜(𝐅𝐃
𝛴
) → 𝑐𝑜(𝔻

𝛴
) is well-defined as a function. We first show that (.)∙ is an injection. Let 𝐒, 𝐒′ ∈ 𝐄𝑐𝑜(𝐅𝐃

𝛴
)

such that 𝐒 ≠ 𝐒′. Without loss of generality, assume that (𝛤 , 𝜑) ∈ 𝐒 and (𝛤 , 𝜑) ∉ 𝐒′. It follows that 𝛤 ∈ 𝐒∙. Now we show that 𝛤 ∉ (𝐒′)∙. 
We prove by contradiction and assume that 𝛤 ∈ (𝐒′)∙. Then there exist 𝜓 such that (𝛤 , 𝜓) ∈ 𝐒′. Since (𝛤 , 𝜓) ∈ 𝐒′, by Lemma 4, 
(𝛤 , 𝜑) ∈ 𝐒′, contradiction.

Now we show that (.)∙ is a surjection. By Lemma 6, (∙)∙ =  . Therefore, (.)∙ is a surjection. □

6.3. Stable, grounded, preferred and semi-stable extensions

This subsection shows that for bisimilar frames, (.)∙ and (.)∙ are bijections when restricted to stable/grounded/preferred/semi-
stable extensions.

The following proposition shows that (.)∙ and (.)∙ preserve stable, grounded, preferred and semi-stable extensions between bisimilar 
frames.

Proposition 5. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar.

1. If  is a stable/grounded/preferred/semi-stable extension in 𝔻
𝛴

, then ∙ is a stable/grounded/preferred/semi-stable extension in 𝐅𝐃
𝛴

.

2. If 𝐒 is a stable/grounded/preferred/semi-stable extension in 𝐅𝐃
𝛴

, then 𝐒∙ is a stable/grounded/preferred/semi-stable extension in 𝔻
𝛴

.

Proof. (1) Assume that  is stable. To show that ∙ is stable, by Proposition 3, it suffices to show that ∙ attacks each argument that 
is not in ∙. Let (𝛤 , 𝜑) be a premise-conclusion argument that does not belong to ∙ . It follows that 𝛤 ∉  . Since  is stable, there 
exists a base argument 𝛥 ∈  that attacks 𝛤 .

Since 𝔻
𝛴

and 𝐅𝐃
𝛴

are bisimilar, by Lemma 5, there exists a premise-conclusion argument (𝛥′, 𝜑) that attacks (𝛤 , 𝜑), where 𝛥′ ⊆ 𝛥.
By Lemma 3, (𝛥, 

⋀
𝛥) is a premise-conclusion argument. Since 𝛥 ∈  , (𝛥, 

⋀
𝛥) ∈ ∙. Since 𝛥′ ⊆ 𝛥, by Lemma 4, (𝛥′, 𝜑) ∈ ∙. 

Therefore, ∙ attacks (𝛤 , 𝜑).
Assume that  is grounded. By Proposition 3, ∙ is complete. To show that ∙ is grounded, we have to show that ∙ is the smallest 

complete extension in 𝐅𝐃
𝛴

. Let 𝐒′ be a complete extension in 𝐅𝐃
𝛴

. By Proposition 3, (𝐒′)∙ is a complete extension in 𝔻
𝛴

. Since  is 
grounded in 𝔻

𝛴
,  ⊆ (𝐒′)∙. By Lemma 6, ∙ ⊆ ((𝐒′)∙)∙ and ((𝐒′)∙)∙ = 𝐒′. Therefore, ∙ ⊆ 𝐒′.

Assume that  is preferred. By Proposition 3, ∙ is complete. To show that ∙ is preferred, we need to show that ∙ is a maximal 
complete extension. Let 𝐒′ be a complete extension in 𝐅𝐃

𝛴
such that ∙ ⊆ 𝐒′. We need to show that ∙ = 𝐒′. Since 𝐒′ is a complete 

extension in 𝐅𝐃
𝛴

, by Proposition 3, (𝐒′)∙ is a complete extension in 𝔻
𝛴

.
Since ∙ ⊆ 𝐒′, by Lemma 6, (∙)∙ ⊆ (𝐒′)∙. By Lemma 6 again, (∙)∙ =  . It follows that  ⊆ (𝐒′)∙. Since  is preferred and (𝐒′)∙ is 

complete,  = (𝐒′)∙. By Lemma 6, ∙ = ((𝐒′)∙)∙ and ((𝐒′)∙)∙ = 𝐒′. It follows that ∙ = 𝐒′.
Assume that  is semi-stable. By Proposition 3, ∙ is complete. To show that ∙ is semi-stable, we need to show that ∙ ∪ (∙)+

is maximal among complete extensions. Let 𝐒 be a complete extension in 𝐅𝐃
𝛴

such that ∙ ∪ (∙)+ ⊆ 𝐒 ∪ 𝐒+. We need to show that 
14

𝐒 ∪ 𝐒+ = ∙ ∪ (∙)+.
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Next we use Lemma 6 to transform ∙ ∪ (∙)+ ⊆ 𝐒 ∪ 𝐒+:

(∙ ∪ (∙)+)∙ ⊆ (𝐒 ∪ 𝐒+)∙ Item (2)

(∙)∙ ∪ ((∙)+)∙ ⊆ 𝐒∙ ∪ (𝐒+)∙ Item (6)

(∙)∙ ∪ ((∙)∙)+ ⊆ 𝐒∙ ∪ (𝐒∙)+ Item (8)

 ∪ + ⊆ 𝐒∙ ∪ (𝐒∙)+ Item (3)

Since  is semi-stable,  ∪ + = 𝐒∙ ∪ (𝐒∙)+. Use Lemma 6 to transform this equation:

( ∪ +)∙ = (𝐒∙ ∪ (𝐒∙)+)∙ Item (1)

∙ ∪ (+)∙ = (𝐒∙)∙ ∪ ((𝐒∙)+)∙ Item (5)

∙ ∪ (∙)+ = (𝐒∙)∙ ∪ ((𝐒∙)∙)+ Item (7)

∙ ∪ (∙)+ = 𝐒 ∪ (𝐒)+ Item (4)

(2) Assume that 𝐒 is stable. To show that 𝐒∙ is stable, it suffices to show that 𝐒∙ attacks each argument that is not in it. Let 𝛤 be 
a base argument that is not in 𝐒∙ . By Lemma 3, (𝛤 , 

⋀
𝛤 ) is a premise-conclusion argument. It follows that (𝛤 , 

⋀
𝛤 ) ∉ 𝐒. Then there 

exists a premise-conclusion argument (𝛥, 𝜓) ∈ 𝐒 that attacks (𝛤 , 
⋀
𝛤 ). Since 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar, 𝛥 attacks 𝛤 . Since (𝛥, 𝜓) ∈ 𝐒, 

𝛥 ∈ 𝐒∙. Therefore, 𝐒∙ attacks 𝛤 .
Assume that 𝐒 is grounded. By Proposition 3, 𝐒∙ is complete. To show that 𝐒∙ is grounded, it suffices to show that 𝐒∙ is the smallest 

complete extension in 𝔻
𝛴

. Let  ′ be a complete extension in 𝔻
𝛴

. By Proposition 3, ( ′)∙ is a complete extension in 𝐅𝐃
𝛴

. Since 𝐒 is 
the grounded extension in 𝐅𝐃

𝛴
, 𝐒 ⊆ ( ′)∙. By Lemma 6, 𝐒∙ ⊆ (( ′)∙)∙ and (( ′)∙)∙ =  ′. Therefore, 𝐒∙ ⊆  ′.

Assume that 𝐒 is preferred. By Proposition 3, 𝐒∙ is complete. To show that 𝐒∙ is preferred, we need to show that 𝐒∙ is a maximal 
complete extension. Let  ′ be a complete extension in 𝔻

𝛴
such that 𝐒∙ ⊆  ′. We need to show that 𝐒∙ =  ′. Since  ′ is a complete 

extension in 𝔻
𝛴

, by Proposition 3, ( ′)∙ is a complete extension in 𝐅𝐃
𝛴

. Since 𝐒∙ ⊆  ′, by Lemma 6, (𝐒∙)∙ ⊆ ( ′)∙. By Lemma 6 again, 
(𝐒∙)∙ = 𝐒. It follows that 𝐒 ⊆ ( ′)∙. Since 𝐒 is preferred and ( ′)∙ is complete, 𝐒 = ( ′)∙. By Lemma 6, 𝐒∙ = (( ′)∙)∙ and (( ′)∙)∙ = 𝐒′. 
It follows that 𝐒∙ =  ′.

Assume that 𝐒 is semi-stable. By Proposition 3, 𝐒∙ is complete. To show that 𝐒∙ is semi-stable, we need to show that 𝐒∙ ∪ (𝐒∙)+
is maximal among complete extensions. Let  be a complete extension in 𝔻

𝛴
such that 𝐒∙ ∪ (𝐒∙)+ ⊆  ∪ +. We need to show that 

𝐒∙ ∪ (𝐒∙)+ =  ∪ +.
We use Lemma 6 to transform 𝐒∙ ∪ (𝐒∙)+ ⊆  ∪ +:

(𝐒∙ ∪ (𝐒∙)+)∙ ⊆ ( ∪ +)∙ Item (1)

(𝐒∙)∙ ∪ ((𝐒∙)+)∙ ⊆ ∙ ∪ (+)∙ Item (5)

(𝐒∙)∙ ∪ ((𝐒∙)∙)+ ⊆ ∙ ∪ (∙)+ Item (7)

𝐒 ∪ 𝐒+ ⊆ ∙ ∪ (∙)+ Item (4)

Since 𝐒 is semi-stable, 𝐒 ∪ 𝐒+ = ∙ ∪ (∙)+. Use Lemma 6 to transform this equation:

(𝐒 ∪ 𝐒+)∙ = (∙ ∪ (∙)+)∙ Item (2)

𝐒∙ ∪ (𝐒+)∙ = (∙)∙ ∪ ((∙)+)∙ Item (6)

𝐒∙ ∪ (𝐒∙)+ = (∙)∙ ∪ ((∙)∙)+ Item (8)

𝐒∙ ∪ (𝐒∙)+ =  ∪ ()+ Item (3) □

The following proposition shows that for bisimilar frames, (.)∙ and (.)∙ are bijections when restricted to stable/grounded/pre-
ferred/semi-stable extensions.

Proposition 6. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar. For 𝑋 ∈ {𝑠𝑡, 𝑔𝑟, 𝑝𝑟, 

𝑠𝑠},

1. (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) is a bijection, and

2. (.)∙ ∶ 𝐄𝑋 (𝐅𝐃
𝛴
) → 𝑋 (𝔻

𝛴
) is a bijection.

Proof. By Proposition 5, (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) and (.)∙ ∶ 𝐄𝑋 (𝐅𝐃

𝛴
) → 𝑋 (𝔻

𝛴
) are well-defined. Since each stable/grounded/pre-

ferred/semi-stable extension is a complete extension, by Proposition 4, (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) and (.)∙ ∶ 𝐄𝑋 (𝐅𝐃

𝛴
) → 𝑋 (𝔻

𝛴
) are 
15

injections. By Lemma 6, (𝐒∙)∙ = 𝐒 and (∙)∙ =  . Therefore, (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) and (.)∙ ∶ 𝐄𝑋 (𝐅𝐃

𝛴
) → 𝑋 (𝔻

𝛴
) are bijections. □
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6.4. Ideal and eager extensions

Before showing that for bisimilar frames, (.)∙ and (.)∙ are bijections when restricted to ideal/eager extensions, we need the following 
lemma.

Lemma 7. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar.

1. If  is a complete extension that is contained in each preferred/semi-stable extension in 𝔻
𝛴

, then ∙ is a complete extension in 𝐅𝐃
𝛴

that is 
contained in each preferred/semi-stable extension.

2. If 𝐒 is a complete extension that is contained in each preferred/semi-stable extension in 𝔻
𝛴

, then 𝐒∙ is a complete extension in 𝔻
𝛴

that is 
contained in each preferred/semi-stable extension.

Proof. (1) Since  is complete, by Proposition 3, ∙ is complete. Let  be the set of preferred/semi-stable extensions in 𝔻
𝛴

. Since 
is contained in each preferred/semi-stable extension in 𝔻

𝛴
,  ⊆

⋂
′∈ 

′. We use Lemma 6 to transform  ⊆
⋂

′∈ 
′:

∙ ⊆ (
⋂
′∈

 ′)∙ Item (1)

∙ ⊆
⋂
′∈

 ′
∙ Item (9)

By Proposition 6, (.)∙ ∶ 𝑝𝑟(𝔻
𝛴
) → 𝐄𝑝𝑟(𝐅𝐃

𝛴
) and (.)∙ ∶ 𝑠𝑠(𝔻

𝛴
) → 𝐄𝑠𝑠(𝐅𝐃

𝛴
) are bijections. It follows that { ′

∙ ∣ 
′ ∈ } is the set of 

preferred/semi-stable extensions in 𝐅𝐃
𝛴

. Since ∙ ⊆
⋂

′∈ 
′
∙ , ∙ is contained in each preferred/semi-stable extension in 𝐅𝐃

𝛴
.

(2) Since 𝐒 is complete, by Proposition 3, 𝐒∙ is complete. Let 𝐄 be the set of preferred/ semi-stable extensions in 𝐅𝐃
𝛴

. Since 𝐒 is 
contained in each preferred/semi-stable extension in 𝐅𝐃

𝛴
, 𝐒 ⊆

⋂
𝐒′∈𝐄 𝐒′. We use Lemma 6 to transform 𝐒 ⊆

⋂
𝐒′∈𝐄 𝐒′:

𝐒∙ ⊆ (
⋂
𝐒′∈𝐄

𝐒′)∙ Item (2)

𝐒∙ ⊆
⋂
𝐒′∈𝐄

𝐒′ ∙ Item (3)

By Proposition 6, (.)∙ ∶ 𝐄𝑝𝑟(𝐅𝐃
𝛴
) → 𝑝𝑟(𝔻

𝛴
) and (.)∙ ∶ 𝐄𝑠𝑠(𝐅𝐃

𝛴
) → 𝑠𝑠(𝔻

𝛴
) are bijections. It follows that {𝐒′∙ ∣ 𝐒

′ ∈ 𝐄} is the set of 
preferred/semi-stable extensions in 𝔻

𝛴
. Since 𝐒∙ ⊆

⋂
𝐒′∈𝐄 𝐒′ ∙, 𝐒∙ is contained in each preferred/semi-stable extension in 𝔻

𝛴
. □

The following proposition shows that (.)∙ and (.)∙ preserve ideal and eager extensions between bisimilar frames.

Proposition 7. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar.

1. If  is an ideal/eager extension in 𝔻
𝛴

, then ∙ is an ideal/eager extension in 𝐅𝐃
𝛴

.

2. If 𝐒 is an ideal/eager extension in 𝐅𝐃
𝛴

, then 𝐒∙ is an ideal/eager extension in 𝔻
𝛴

.

Proof. (1) Assume that  is an ideal/eager extension. To show that ∙ is ideal/eager, we need to show that ∙ is a maximal complete 
extension in 𝐅𝐃

𝛴
that is contained in each preferred/semi-stable extension. By Proposition 3, ∙ is complete.

– Since  is ideal/eager,  is contained in each preferred/semi-stable extension in 𝔻
𝛴

. By Lemma 7, ∙ is contained in each pre-

ferred/semi-stable extension in 𝐅𝐃
𝛴

.
– Now we show that ∙ is a maximal complete extension that is contained in each preferred/semi-stable extension. Let 𝐒 be a 

complete extension in 𝐅𝐃
𝛴

that is contained in each preferred/semi-stable extension such that ∙ ⊆ 𝐒. We need to show that ∙ = 𝐒. 
We use Lemma 6 to transform ∙ ⊆ 𝐒:

(∙)∙ ⊆ 𝐒∙ Item (2)

 ⊆ 𝐒∙ Item (3)

Since 𝐒 is a complete extension in 𝐅𝐃
𝛴

that is contained in each preferred/semi-stable extension, by Lemma 7, 𝐒∙ is contained in 
each preferred/semi-stable extension in 𝔻

𝛴
. Since  is ideal/eager and  ⊆ 𝐒∙, we have  = 𝐒∙. Use Lemma 6 to transform  = 𝐒∙:

∙ = (𝐒∙)∙ Item (1)

∙ = 𝐒 Item (4)

(2) Assume that 𝐒 is an ideal/eager extension. To show that 𝐒∙ is ideal/eager, we need to show that 𝐒∙ is a maximal complete 
16

extension in 𝔻
𝛴

that is contained in each preferred/semi-stable extension. By Proposition 3, 𝐒∙ is complete.
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– Since 𝐒 is ideal/eager, 𝐒 is contained in each preferred/semi-table extension in 𝐅𝐃
𝛴

. By Proposition 7, 𝐒∙ is contained in each 
preferred/semi-stable extension in 𝔻

𝛴
.

– Now we show that 𝐒∙ is a maximal complete extension in 𝔻
𝛴

that is contained in each preferred/semi-stable extension. Let  be a 
complete extension in 𝔻

𝛴
that is contained in each preferred/semi-stable extension such that 𝐒∙ ⊆  . We need to show that 𝐒∙ =  . 

Use Lemma 6 to transform 𝐒∙ ⊆  :

(𝐒∙)∙ ⊆ ∙ Item (1)

𝐒 ⊆ ∙ Item (4)

Since  is a complete extension in 𝔻
𝛴

that is contained in each preferred/semi-stable extension, by Lemma 7, ∙ is contained in 
each preferred/semistable extension in 𝐅𝐃

𝛴
. Since 𝐒 is ideal/eager and 𝐒 ⊆ ∙, we have 𝐒 = ∙. Use Lemma 6 to transform 𝐒 = ∙:

𝐒∙ = (∙)∙ Item (2)

𝐒∙ =  Item (3) □

The following proposition shows that for bisimilar frames, (.)∙ and (.)∙ are bijections when restricted to ideal/eager extensions.

Proposition 8. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF such that 𝔻

𝛴
and 𝐅𝐃

𝛴
are bisimilar. For 𝑋 ∈ {𝑖𝑑, 𝑒𝑎},

1. (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) is a bijection, and

2. (.)∙ ∶ 𝐄𝑋 (𝐅𝐃
𝛴
) → 𝑋 (𝔻

𝛴
) is a bijection.

Proof. By Proposition 7, (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) and (.)∙ ∶ 𝐄𝑋 (𝐅𝐃

𝛴
) → 𝑋 (𝔻

𝛴
) are well-defined. Since each ideal/eager extension 

is a complete extension, by Proposition 4, (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) and (.)∙ ∶ 𝐄𝑋 (𝐅𝐃

𝛴
) → 𝑋 (𝔻

𝛴
) are injections. By Proposition 6, 

(𝐒∙)∙ = 𝐒 and (∙)∙ =  . Therefore, (.)∙ ∶ 𝑋 (𝔻
𝛴
) → 𝐄𝑋 (𝐅𝐃

𝛴
) and (.)∙ ∶ 𝐄𝑋 (𝐅𝐃

𝛴
) → 𝑋 (𝔻

𝛴
) are surjections. □

6.5. Bisimulation implies extensional equivalence

The following is the main theorem in this paper. It shows that bisimulation implies extensional equivalence. 𝑋-extensional equiv-
alence (Definition 12) requires that (.)∙ and (.)∙ are bijections when restricted to 𝑋-extensions. We have proved the related results in 
the previous subsections. Therefore, the main theorem follows directly.

Theorem 1. Let (, ⊢) be a logic and 𝛴 a knowledge base. Let 𝔻
𝛴
= (𝐴𝑟𝑏(𝛴), 𝔻) be a BAF and 𝐅𝐃

𝛴
= (𝐴𝑟𝑝(𝛴), 𝐑𝐃) a PAF. If 𝔻

𝛴
and 

𝐅𝐃
𝛴

are bisimilar, then 𝔻
𝛴

and 𝐅𝐃
𝛴

are 𝑋-extensionally equivalent, where 𝑋 ∈ {𝑐𝑜, 𝑠𝑡, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠, 𝑖𝑑, 𝑒𝑎}.

Proof. It follows from Propositions 4, 6 and 8. □

For a BAF and a PAF, being extensionally equivalent means that they have the same capacity to evaluate arguments with respect 
to extensional semantics. Bisimulation provides a sufficient condition for extensional equivalence.

Example 7. The PAF 𝐅𝐃𝐷𝐷
𝛴

in Example 2 and the BAF 𝔻2
𝛴

in Example 3 are bisimilar (Example 6). They are shown to be complete-
extensionally equivalent in Example 5. By the above theorem, they are 𝑋-extensionally equivalent for 𝑋 ∈ {𝑐𝑜, 𝑠𝑡, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠, 𝑖𝑑, 𝑒𝑎}.

Some frames are proved to be bisimilar in Proposition 2. It is a corollary that they are extensionally equivalent.

Corollary 1. Let (, ⊢) be a logic and 𝛴 a knowledge base. For 𝑋 ∈ {𝑐𝑜, 𝑠𝑡, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠, 𝑖𝑑, 𝑒𝑎},

(1) 
𝔻1
𝛴

and 𝐅𝐃𝐷
𝛴

are 𝑋-extensionally equivalent.

(2) 
𝔻2
𝛴

and 𝐅𝐃𝐷𝐷
𝛴

are 𝑋-extensionally equivalent.

(3) 
𝔻2
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

are 𝑋-extensionally equivalent.

(4) 
𝔻3
𝛴

and 𝐅𝐃𝑈
𝛴

are 𝑋-extensionally equivalent.

Proof. It follows directly from Theorem 1 and Proposition 2. □

Note that 𝐅𝐃𝐷𝐷
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

are extensionally equivalent to the same BAF 𝔻2
𝛴

in the above corollary. The following corollary 
17

shows that PAFs 𝐅𝐃𝐷𝐷
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

have identical 𝑋-extensions, though they have distinct attack relations. The relation between attack 
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functions 𝐃𝐷𝐷 and 𝐃𝐷𝑈 is shown in Fig. 1. The following result is an example of how base argumentation helps to gain a deeper 
understanding of premise-conclusion argumentation.

Corollary 2. Let (, ⊢) be a logic and 𝛴 a knowledge base. For 𝑋 ∈ {𝑐𝑜, 𝑠𝑡, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠, 𝑖𝑑, 𝑒𝑎},

𝐄𝑋 (𝐅
𝐃𝐷𝐷
𝛴

) = 𝐄𝑋 (𝐅
𝐃𝐷𝑈
𝛴

).

Proof. Assume that 𝐒 ∈ 𝐄𝑋 (𝐅
𝐃𝐷𝐷
𝛴

). By item (2) in Corollary 1, 𝐒∙ ∈ 𝑋 (
𝔻2
𝛴

). By item (3) in Corollary 1, (𝐒∙)∙ ∈ 𝐄𝑋 (𝐅
𝐃𝐷𝑈
𝛴

). By 
Lemma 6, 𝐒 = (𝐒∙)∙. Therefore, 𝐒 ∈ 𝐄𝑋 (𝐅

𝐃𝐷𝑈
𝛴

).
By a similar proof, 𝐄𝑋 (𝐅

𝐃𝐷𝑈
𝛴

) ⊆ 𝐄𝑋 (𝐅
𝐃𝐷𝐷
𝛴

). □

To further demonstrate how base argumentation, bisimulation and extensional equivalence can contribute to the study of premise-

conclusion argumentation, we conduct in-depth research on the extensional properties of 𝔻2
𝛴

in the next section and transfer these 
properties to 𝐅𝐃𝐷𝐷

𝛴
and 𝐅𝐃𝐷𝑈

𝛴
via bisimulation and extensional equivalence in Section 8.

7. Extensional properties of 𝔻𝟐
𝜮

The main result in this section is that there are essentially three kinds of extensions in 𝔻2
𝛴

: complete, preferred and grounded 
extensions (Propositions 13 and 15). These properties are exported to 𝐅𝐃𝐷𝐷

𝛴
and 𝐅𝐃𝐷𝑈

𝛴
via bisimulation and extensional equivalence 

in the next section. For an example of 𝔻2
𝛴

, see Example 4.

This section assumes as given an abstract logic (, ⊢) and a knowledge base 𝛴. Since our main concern is 𝔻2
𝛴

, 𝔻2 is omitted 
when no confusion arises, e.g., we write “𝛤 attacks 𝛥” instead of “𝛤 𝔻2-attacks 𝛥”.

7.1. The form of complete extensions

By the definition of base arguments (Definition 8), not every subset of the knowledge base is a base argument. Therefore we 
introduce a notation for the set of base arguments which are subsets of a given set.

Definition 14. Let 𝛷⊆𝛴. Denote by 𝜌(𝛷) the set of base arguments which are subsets of 𝛷, i.e., 𝜌(𝛷)={𝛤⊆𝛷 ∣ 𝛤 is a base argument}.

Lemma 2 shows that any subset of a base argument is a base argument. It follows that for any base argument 𝛤 , each element in 
(𝛤 ) is a base argument, where (𝛤 ) is the power set of 𝛤 .

The following lemma shows that each complete extension in 𝔻2
𝛴

contains the empty set, and is closed under union and intersection.

Lemma 8. Let  be a complete extension in 𝔻2
𝛴

.

1. ∅ ∈  .

2. For any  ′ ⊆  , if 
⋃
𝛤∈′ 𝛤 is a base argument, then 

⋃
𝛤∈′ 𝛤 ∈  .

3. For any  ′ ⊆  , if 
⋂
𝛤∈′ 𝛤 is a base argument, then 

⋂
𝛤∈′ 𝛤 ∈  .

Proof. (1) By definition, ∅ is not attacked by any base argument. Then ∅ is defended by any extension. Since  is a complete 
extension, ∅ ∈  .

(2) It suffices to show that  defends 
⋃
𝛤∈′ 𝛤 . Assume that 𝛺 attacks 

⋃
𝛤∈′ 𝛤 . Then there exists 𝜑 ∈

⋃
𝛤∈′ 𝛤 such that 𝛺 ⊢ ¬𝜑. 

Then there exists 𝛤 ′ ∈  ′ such that 𝜑 ∈ 𝛤 ′. Since  ′ ⊆  , 𝛤 ′ ∈  . Since 𝛺 ⊢ ¬𝜑 and 𝜑 ∈ 𝛤 ′, 𝛺 attacks 𝛤 ′. Since  is complete, there 
exists 𝛺′ ∈  that attacks 𝛺. Therefore,  defends 

⋃
𝛤∈′ 𝛤 .

(3) It follows from the sub-argument closure property (Lemma 4). □

The following proposition shows that each complete extension in 𝔻2
𝛴

is of a certain form.

Proposition 9. If  is a complete extension in 𝔻2
𝛴

, then  = 𝜌(
⋃
𝛤∈ 𝛤 ).

Proof. Assume that 𝛥 ∈  . Then 𝛥 ⊆
⋃
𝛤∈ 𝛤 . Since 𝛥 is a base argument, 𝛥 ∈ 𝜌(

⋃
𝛤∈ 𝛤 ).

Assume that 𝛥 ∈ 𝜌(
⋃
𝛤∈ 𝛤 ). Then 𝛥 is a base argument and 𝛥 ⊆

⋃
𝛤∈ 𝛤 . It follows that 𝛥 =

⋃
𝛤∈ (𝛥 ∩ 𝛤 ). For any 𝛤 ∈  , by 

Lemma 2 and the sub-argument closure property (Lemma 4), 𝛥 ∩𝛤 is a base argument 𝛥 ∩𝛤 ∈  . It follows that {𝛥 ∩𝛤 ∣ 𝛤 ∈ } ⊆  . 
18

Since  is a complete extension, by Lemma 8, 
⋃
𝛤∈ (𝛥 ∩ 𝛤 ) ∈  , i.e., 𝛥 ∈  . □
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7.2. Two typical complete extensions

This subsection shows that 𝜌(𝛤 ) and 𝜌(
⋂

𝐌𝐂(𝛴)) are complete extensions in 𝔻2
𝛴

, where 𝛤 is a maximal consistent subset of the 
knowledge base 𝛴 and 

⋂
𝐌𝐂(𝛴) denotes the intersection of maximal consistent subsets of 𝛴.

Lemma 9. Let 𝛤 be a maximal consistent subset of 𝛴. If 𝜑 ∈𝛴 and 𝜑 ∉ 𝛤 , then 𝛤 ⊢ ¬𝜑.

Proof. Since 𝜑 ∈𝛴 and 𝜑 ∉ 𝛤 , 𝛤 ∪ {𝜑} is inconsistent. By definition, 𝛤 ∪ {𝜑} ⊢ ⊥. By the property of negation, 𝛤 ⊢ ¬𝜑. □

Lemma 10. Let 𝛤 be a maximal consistent subset of 𝛴 such that 𝛤 ⊢ 𝜑. Then there exists a base argument 𝛥 ⊆ 𝛤 such that 𝛥 ⊢ 𝜑.

Proof. Since 𝛤 ⊢ 𝜑 and ⊢ is finitary, there exists a finite subset 𝛤 ′ of 𝛤 such that 𝛤 ⊢ 𝜑. Let 𝛤 ′ = {𝜑1, … , 𝜑𝑛}. Add the formulas 
in 𝛤 ′ one by one to 𝛥 until 𝛥 ⊢ 𝜑. It follows that there does not exist 𝛥′ ⊂ 𝛥 such that 𝛥′ ⊢ 𝜑. Therefore, there does not exist 𝛥′ ⊂ 𝛥
such that 𝐶𝑛⊢(𝛥′) = 𝐶𝑛⊢(𝛥). It follows that 𝛥 is a base argument. □

The following proposition shows that 𝜌(𝛤 ) is a complete extension in 𝔻2
𝛴

, where 𝛤 is a maximal consistent subset of the knowledge 
base.

Proposition 10. Let 𝛤 be a maximal consistent subset of 𝛴. Then  = 𝜌(𝛤 ) is a complete extension in 𝔻2
𝛴

.

Proof. First we show that  is conflict-free. Assume that 𝛥, 𝛥′ ∈  and that 𝛥 attacks 𝛥′. Then there exists 𝜑 ∈ 𝛥′ such that 𝛥 ⊢ ¬𝜑. 
Since 𝛥, 𝛥′ ∈  , 𝛥, 𝛥′ ⊆ 𝛤 . By the monotonicity of ⊢, 𝛤 ⊢ ¬𝜑. Since 𝛥′ ⊆ 𝛤 , 𝜑 ∈ 𝛤 , and hence 𝛤 ⊢ 𝜑. Therefore, 𝛤 is inconsistent, 
contradiction. It follows that  is conflict-free.

Now we show that  defends each of its elements. Assume that 𝛥 ∈  and that 𝛺 attacks 𝛥. Then there exists 𝜑 ∈ 𝛥 such that 
𝛺 ⊢ ¬𝜑. Since 𝛥 ⊆ 𝛤 , 𝜑 ∈ 𝛤 . Since 𝛤 is consistent and 𝛺 ⊢ ¬𝜑, by the monotonicity of ⊢, 𝛺 ⊈ 𝛤 . Let 𝜓 be a formula such that 𝜓 ∈𝛺
and 𝜓 ∉ 𝛤 . Since 𝛺 is a base argument, 𝛺 ⊆𝛴. Then 𝜓 ∈𝛺. By Lemma 9, 𝛤 ⊢ ¬𝜓 . Therefore, 𝛤 attacks 𝛺.

Next we show that  contains each argument it defends. Assume that  defends a base argument 𝛥. It suffices to show that 𝛥 ⊆ 𝛤 . 
We prove by contradiction and assume that 𝜑 ∈ 𝛥 and 𝜑 ∉ 𝛤 . Since 𝛥 is a base argument, 𝛥 ⊆𝛴. Then 𝜑 ∈𝛴. By Lemma 9, 𝛤 ⊢ ¬𝜑. 
By Lemma 10, there exists a base argument 𝛤 ′ ⊆ 𝛤 such that 𝛤 ′ ⊢ ¬𝜑. It follows that 𝛤 ′ ∈  . Therefore, 𝛤 ′ attacks 𝛥. Since  defends 
𝛥, there exists 𝛤 ′′ ∈  that attacks 𝛤 ′. Since 𝛤 ′ ∈  ,  is not conflict-free, contradiction. □

Now we start to show that 𝜌(
⋂

𝐌𝐂(𝛴)) is a complete extension in 𝔻2
𝛴

, where 𝐌𝐂(𝛴) denotes the set of maximal consistent 
subsets of 𝛴 and 

⋂
𝐌𝐂(𝛴) denotes the intersection of sets in 𝐌𝐂(𝛴).

First we define an operation to obtain a maximal consistent subset from a consistent subset of the knowledge base.

Definition 15. Let 𝛤 be a consistent subset of 𝛴. Denote by 𝑀𝑎𝑥(𝛤 ) the maximal consistent subset of 𝛴 generated as follows: let 
𝜑1, 𝜑2, … be a enumeration of formulas in 𝛴 ⧵ 𝛤 ,

𝛤0 = 𝛤

𝛤𝑛+1 =

{
𝛤𝑛 ∪ {𝜑𝑛}, if it is consistent

𝛤𝑛, otherwise

𝑀𝑎𝑥(𝛤 ) =
⋃
𝑛≥0
𝛤𝑛.

It can be proved by induction on 𝑛 that Definition 15 is well-defined.

Corollary 3. Let 𝛤 be a base argument. Then  = 𝜌(𝑀𝑎𝑥(𝛤 )) is a complete extension in 𝔻2
𝛴

.

Proof. It follows directly from Proposition 10. □

The following are some properties about 
⋂

𝐌𝐂(𝛴).

Lemma 11. Let (, ⊢) be a logic and 𝛴 a knowledge base.

1.
⋂

𝐌𝐂(𝛴) is consistent.

2. For any 𝛤 ∈ 𝜌(
⋂

𝐌𝐂(𝛴)), no base argument 𝔻2-attacks 𝛤 .

3. For any 𝛤 ∈ 𝜌(
⋂

𝐌𝐂(𝛴)), 𝛤 does not 𝔻2-attack any base argument.
19

4. For any base argument 𝛤 , if 𝛤 ∉ 𝜌(
⋂

𝐌𝐂(𝛴)), then 𝛤 is 𝔻2-attacked by a base argument.
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Proof. (1) It follows directly from the definitions.
(2) We prove by contradiction and assume that a base argument 𝛥 attacks 𝛤 . Then there exists 𝜑 ∈ 𝛤 such that 𝛥 ⊢ ¬𝜑. Since 

𝛤 ⊆
⋂

𝐌𝐂(𝛴), 𝜑 ∈
⋂

𝐌𝐂(𝛴). Therefore, 𝜑 ∈𝑀𝑎𝑥(𝛥). Since 𝛥 ⊢ ¬𝜑 and 𝛥 ⊆𝑀𝑎𝑥(𝛥), by the monotonicity of ⊢, 𝑀𝑎𝑥(𝛥) ⊢ ¬𝜑. 
Since 𝜑 ∈𝑀𝑎𝑥(𝛥), 𝑀𝑎𝑥(𝛥) is inconsistent, contradiction. Therefore, no base argument attacks 𝛤 .

(3) We prove by contradiction and assume that 𝛤 attacks a base argument 𝛥. Then there exists 𝜑 ∈ 𝛥 such that 𝛤 ⊢ ¬𝜑. Since 
𝛥 ⊆ 𝑀𝑎𝑥(𝛥), 𝜑 ∈𝑀𝑎𝑥(𝛥). Since 𝛤 ⊆

⋂
𝐌𝐂(𝛴) ⊆ 𝑀𝑎𝑥(𝛥), by the monotonicity of ⊢, 𝑀𝑎𝑥(𝛥) ⊢ ¬𝜑. It follows that 𝑀𝑎𝑥(𝛥) is 

inconsistent, contradiction. Therefore, 𝛤 does not attack any base argument.
(4) Since 𝛤 ∉ 𝜌(

⋂
𝐌𝐂(𝛴)), 𝛤 ⊈

⋂
𝐌𝐂(𝛴). Then there exists 𝜑 ∈ 𝛤 such that 𝜑 ∉

⋂
𝐌𝐂(𝛴). Then there exists 𝛥 ∈𝐌𝐂(𝛴) such 

that 𝜑 ∉ 𝛥. By Lemma 9, 𝛥 ⊢ ¬𝜑. By Lemma 10, there exists a base argument 𝛥′ ⊆ 𝛥 that attacks 𝛤 . □

The following proposition shows that 𝜌(
⋂

𝐌𝐂(𝛴)) is a complete extension in 𝔻2
𝛴

.

Proposition 11.  = 𝜌(
⋂

𝐌𝐂(𝛴)) is a complete extension in 𝔻2
𝛴

.

Proof. By items (1) and (2) in Lemma 11,  is conflict-free and defends each of its elements. Assume that  defends 𝛤 . To show 
that 𝛤 ∈  , it suffices to show that 𝛤 ⊆

⋂
𝐌𝐂(𝛴). Assume that 𝛤 ⊈

⋂
𝐌𝐂(𝛴), by item (4) in Lemma 11, 𝛤 is attacked by some base 

argument 𝛥. Since  defends 𝛤 ,  attacks 𝛤 , contradicting item (3) in Lemma 11 (3). Therefore,  is a complete extension. □

Remark 1. It is not the case that for any consistent subset 𝛥 of 𝛴, 𝜌(𝛥) is a complete extension. In Example 3, {𝑝} is a consistent 
subset of the knowledge base, but {∅, {𝑝}} is not a complete extension.

Remark 2. It is not the case that each complete extension is of the form 𝜌(𝛤 ) or 𝜌(
⋂

𝐌𝐂(𝛴)), where 𝛤 is a maximal consistent subset 
of 𝛴. Consider the following example: let (, ⊢) be propositional logic and 𝛴 = {𝑝, ¬𝑝, 𝑞, ¬𝑞}. The generated BAF is as follows:

{¬𝑝, 𝑞} {𝑝} {¬𝑝} {𝑝,¬𝑞}

{¬𝑝,¬𝑞} {𝑞} {¬𝑞} {𝑝, 𝑞}

∅

In this example, 𝐌𝐂(𝛴) = {{¬𝑝, 𝑞}, {𝑝, ¬𝑞}, {¬𝑝, ¬𝑞}, {𝑝, 𝑞}}, 
⋂

𝐌𝐂(𝛴) = ∅. Note that {∅, {𝑝}} is a complete extension but it is not 
of the form 𝜌(

⋂
𝐌𝐂(𝛴)) or 𝜌(𝛤 ), where 𝛤 ∈𝐌𝐂(𝛴).

7.3. Preferred, stable and semi-stable extensions are identical

This subsection shows that preferred, stable and semi-stable extensions are identical in 𝔻2
𝛴

.

The following proposition shows that preferred extensions in 𝔻2
𝛴

have a closed relation with the maximal consistent subsets of 
the knowledge base.

Proposition 12. For any  ⊆𝐴𝑟𝑏(𝛴),  is a preferred extension in 𝔻2
𝛴

iff there exists 𝛤 ∈𝐌𝐂(𝛴) such that  = 𝜌(𝛤 ).

Proof. For the left-to-right direction, assume that  is a preferred extension in 𝔻2
𝛴

. Since each preferred extension is a com-
plete extension, by Proposition 9,  = 𝜌(

⋃
𝛤∈ 𝛤 ). By Proposition 10,  ′ = 𝜌(𝑀𝑎𝑥(

⋃
𝛤∈ 𝛤 )) is a complete extension. Since ⋃

𝛤∈ 𝛤 ⊆ 𝑀𝑎𝑥(
⋃
𝛤∈ 𝛤 ),  ⊆  ′. Since  is a preferred extension,  =  ′ = 𝜌(𝑀𝑎𝑥(

⋃
𝛤∈ 𝛤 )), 𝑀𝑎𝑥(

⋃
𝛤∈ 𝛤 ) is the required 

maximal consistent subset of 𝛴.
Now we consider the right-to-left direction. By Proposition 10,  = 𝜌(𝛤 ) is a complete extension in 𝔻2

𝛴
. We need to show that 

is a maximal complete extension. Let  ′ be a complete extension such that  ⊆  ′. By Proposition 9,  ′ = 𝜌(
⋃
𝛥∈′ 𝛥).

Now we show that  ′ ⊆  , i.e., 𝜌(
⋃
𝛥∈′ 𝛥) ⊆ 𝜌(𝛤 ). Assume that 𝜌(

⋃
𝛥∈′ 𝛥) ⊈ 𝜌(𝛤 ). Then there exists a base argument 𝛺 ⊆

⋃
𝛥∈′ 𝛥

such that 𝛺 ⊈ 𝛤 . Then there exists 𝜑 ∈𝛺 such that 𝜑 ∉ 𝛤 . Since 𝛺 is a base argument, 𝛺 ⊆𝛴. Then 𝜑 ∈𝛴. By Lemma 9, 𝛤 ⊢ ¬𝜑. By 
Lemma 10, there exists a base argument 𝛤 ′ ⊆ 𝛤 such that 𝛤 ⊢ ¬𝜑. It follows that 𝛤 ′ attacks 𝛺. Since  = 𝜌(𝛤 ) and 𝛤 ′ ⊆ 𝛤 , 𝛤 ′ ∈  . 
Since  ⊆  ′, 𝛤 ′ ∈  ′. Since 𝛺 ∈  ′,  ′ is not conflict-free, contradicting the fact that  ′ is complete. Therefore,  ′ ⊆  . It follows 
that  is a maximal complete extension. □

Recall that + denotes the set of base arguments attacked by  , i.e., + ∶= {𝛤 ∈ 𝐴𝑟𝑏(𝛴) ∣  attacks 𝛤 }. The following lemma 
20

shows that  ∪ + =𝐴𝑟𝑏(𝛴) for any preferred extension  in 𝔻2
𝛴

.
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Lemma 12. If  is a preferred extension in 𝔻2
𝛴

, then  ∪ + =𝐴𝑟𝑏(𝛴).

Proof. Since  ⊆𝐴𝑟𝑏(𝛴) and + ⊆𝐴𝑟𝑏(𝛴),  ∪ + ⊆𝐴𝑟𝑏(𝛴).
Now we show that 𝐴𝑟𝑏(𝛴) ⊆  ∪ +. Assume that 𝛺 ∈ 𝐴𝑟𝑏(𝛴) and 𝛺 ∉  . Since  is a preferred extension in 𝔻2

𝛴
, by Proposi-

tion 12, there exists 𝛤 ∈𝐌𝐂(𝛴) such that  = 𝜌(𝛤 ). Since 𝛺 ∉  , 𝛺 ⊈ 𝛤 . It follows that there exists 𝜑 ∈𝛺 such that 𝜑 ∉ 𝛤 . Since 
𝛺 ∈ 𝐴𝑟𝑏(𝛴), 𝛺 ⊆ 𝛴. Then 𝜑 ∈ 𝛴. By Lemma 9, 𝛤 ⊢ ¬𝜑. By Lemma 10, there exists a base argument 𝛤 ′ ⊆ 𝛤 such that 𝛤 ′ ⊢ ¬𝜑. 
Therefore, 𝛤 ′ attacks 𝛺. Since  = 𝜌(𝛤 ), 𝛤 ′ ∈  . It follows that 𝛺 ∈ +. □

The following proposition shows that preferred, stable and semi-stable extensions are identical in 𝔻2
𝛴

.

Proposition 13. Let  ⊆𝐴𝑟𝑏(𝛴). The following conditions are equivalent:

1.  is a preferred extension in 𝔻2
𝛴

.

2.  is a stable extension in 𝔻2
𝛴

.

3.  is a semi-stable extension in 𝔻2
𝛴

.

Proof. (1) ⇒ (2): Assume that  is a preferred extension in 𝔻2
𝛴

. By Proposition 12, there exists 𝛤 ∈𝐌𝐂(𝛴) such that  = 𝜌(𝛤 ). To 
show that  is stable, we need to show that  attacks each argument that is not in  . By Lemma 12,  ∪+ =𝐴𝑟𝑏(𝛴). It follows that 
 attacks each argument that is not in  .

(2) ⇒ (3): It follows from the fact that each stable extension is a semi-stable extension.
(3) ⇒ (1): It follows from the fact that each semi-stable extension is a preferred extension. □

7.4. Grounded, ideal and eager extensions are identical

This subsection shows that grounded, ideal and eager extensions are identical in 𝔻2
𝛴

.

The following proposition shows that the grounded extension in 𝔻2
𝛴

is closely related to the intersection of all maximal consistent 
subsets of the knowledge base.

Proposition 14.  = 𝜌(
⋂

𝐌𝐂(𝛴)) is the grounded extension in 𝔻2
𝛴

.

Proof. By Proposition 11,  is a complete extension. We need to show that for any complete extension  ′ ,  ⊆  ′. Let 𝛤 ∈  . By 
Lemma 11, 𝛤 is not attacked. Therefore,  ′ defends 𝛤 . Since  ′ is a complete extension, 𝛤 ∈  ′. □

The following lemma shows that 𝜌 distributes over intersection.

Lemma 13. Let 𝛷 be a set of consistent subsets of 𝛴. Then⋂
𝛤∈𝛷

𝜌(𝛤 ) = 𝜌(
⋂
𝛤∈𝛷

𝛤 ).

Proof. Assume that 𝛥 ∈
⋂
𝛤∈𝛷 𝜌(𝛤 ). Then 𝛥 is a base argument by Lemma 2 and for any 𝛤 ∈𝛷, 𝛥 ⊆ 𝛤 . Then 𝛥 ⊆

⋂
𝛤∈𝛷 𝛤 . It follows 

that 𝛥 ∈ 𝜌(
⋂
𝛤∈𝛷 𝛤 ).

Assume that 𝛥 ∈ 𝜌(
⋂
𝛤∈𝛷 𝛤 ). Then 𝛥 is a base argument and 𝛥 ⊆

⋂
𝛤∈𝛷 𝛤 . Then for any 𝛤 ∈ 𝛷, 𝛥 ∈ 𝜌(𝛤 ). Therefore, 𝛥 ∈⋂

𝛤∈𝛷 𝜌(𝛤 ). □

The following proposition shows that grounded, ideal and eager extensions are identical in 𝔻2
𝛴

.

Proposition 15. Let (, ⊢) be a logic and 𝛴 a knowledge base. Let  ⊆𝐴𝑟𝑏(𝛴). Then the following conditions are equivalent:

1.  is the grounded extension in 𝔻2
𝛴

.

2.  is an ideal extension in 𝔻2
𝛴

.

3.  is an eager extension in 𝔻2
𝛴

.

Proof. (1) ⇒ (2): Assume that  is the grounded extension. By Proposition 14,  = 𝜌(
⋂

𝐌𝐂(𝛴)). To show that  is an ideal extension, 
we need to show that  is a maximal complete extension contained in each preferred extension.
21

– Since each grounded extension is a complete extension,  is a complete extension.
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– By Proposition 12, for any preferred extension  ′, there exists 𝛤 ∈ 𝐌𝐂(𝛴) such that  ′ = 𝜌(𝛤 ). Since for any 𝛤 ∈ 𝐌𝐂(𝛴), 
𝜌(
⋂

𝐌𝐂(𝛴)) ⊆ 𝜌(𝛤 ),  ⊆  ′ for any preferred extension  ′.
– Assume that  ′ is a complete extension that is contained in each preferred extension such that  ⊆  ′. By Proposition 12, for any 
𝛤 ∈𝐌𝐂(𝛴),  ′ ⊆ 𝜌(𝛤 ). Therefore,  ′ ⊆

⋂
𝛤∈𝐌𝐂(𝛴) 𝜌(𝛤 ). By Lemma 13, 

⋂
𝛤∈𝐌𝐂(𝛴) 𝜌(𝛤 ) = 𝜌(

⋂
𝐌𝐂(𝛴)). It follows that  ′ ⊆  . 

Since  ⊆  ′,  =  ′.

Therefore,  is an ideal extension.
(2) ⇒ (1): Assume that  is an ideal extension. Then  is a maximal complete extension that is contained in each preferred 

extension. By Proposition 14, we need to show that  = 𝜌(
⋂

𝐌𝐂(𝛴)). By Proposition 12, a set  ′ of base arguments is a preferred 
extension iff there exists 𝛤 ∈ 𝐌𝐂(𝛴) such that  ′ = 𝜌(𝛤 ). Therefore, {𝜌(𝛤 ) ∣ 𝛤 ∈ 𝐌𝐂(𝛴)} is the set of all preferred extensions. 
Since  is contained in each preferred extension,  ⊆

⋂
{𝜌(𝛤 ) ∣ 𝛤 ∈𝐌𝐂(𝛴)}. By Lemma 13, 

⋂
{𝜌(𝛤 ) ∣ 𝛤 ∈𝐌𝐂(𝛴)} = 𝜌(

⋂
𝐌𝐂(𝛴)). 

Therefore,  ⊆ 𝜌(
⋂

𝐌𝐂(𝛴)). By Proposition 14, 𝜌(
⋂

𝐌𝐂(𝛴)) is the grounded extension. Therefore, 𝜌(
⋂

𝐌𝐂(𝛴)) ⊆  . It follows that 
 = 𝜌(

⋂
𝐌𝐂(𝛴)).

(1) ⇒ (3): We have the following biconditionals:

 is contained in each semi-stable extension.

(Proposition 13) iff  is contained in each preferred extension

(Proposition 12) iff For any 𝛤 ∈𝐌𝐂(𝛴),  ⊆ 𝜌(𝛤 )

iff  ⊆
⋂

𝛤∈𝐌𝐂(𝛴)
𝜌(𝛤 )

(Lemma 13) iff  ⊆ 𝜌(
⋂

𝐌𝐂(𝛴))

Therefore, to show that  is an eager extension, it suffices to show that  is a maximal complete extension such that  ⊆ 𝜌(
⋂

𝐌𝐂(𝛴)). 
Since  is the grounded extension, by Proposition 14,  = 𝜌(

⋂
𝐌𝐂(𝛴)), which completes the proof.

(3) ⇒ (1): Assume that  is an eager extension. By the biconditionals in the proof of (1) ⇒ (3),  is a maximal complete extension 
such that  ⊆ 𝜌(

⋂
𝐌𝐂(𝛴)). By Proposition 11, 𝜌(

⋂
𝐌𝐂(𝛴)) is a complete extension. Since  ⊆ 𝜌(

⋂
𝐌𝐂(𝛴)), by the maximality of 

 ,  = 𝜌(
⋂

𝐌𝐂(𝛴)). By Proposition 14,  is the grounded extension. □

8. Extensional properties of 𝐅𝐃𝑫𝑫

𝜮
and 𝐅𝐃𝑫𝑼

𝜮

This section exports the extensional properties of 𝔻2
𝛴

investigated in the last section to 𝐅𝐃𝐷𝐷
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

via bisimulation and 
extensional equivalence. Since the extensions in 𝐅𝐃𝐷𝐷

𝛴
and 𝐅𝐃𝐷𝑈

𝛴
are identical (Corollary 2), they are essentially one PAF from the 

perspective of extensions.
For a knowledge base 𝛴, denote by 𝜇(𝛤 ) the set of premise-conclusion arguments whose premise set is a subset of 𝛤 , i.e.,

𝜇(𝛤 ) ∶= {(𝛤 ′, 𝜑) ∣ (𝛤 ′, 𝜑) ∈𝐴𝑟𝑝(𝛴) and 𝛤 ′ ⊆ 𝛤 }.

The following lemma relates 𝜇(𝛤 ) to 𝜌(𝛤 ) by (.)∙. It shows that the set of premise-conclusion arguments whose premise set is a 
subset of 𝛤 is identical to the result of applying (.)∙ to the set of base arguments which are subsets of 𝛤 .

Lemma 14. Let (, ⊢) be an abstract logic and 𝛴 a knowledge base. Let 𝛤 be a consistent subset of 𝛴. Then (𝜌(𝛤 ))∙ = 𝜇(𝛤 ).

Proof. By definition,

(𝜌(𝛤 ))∙ = {(𝛤 ′, 𝜑) ∣ (𝛤 ′, 𝜑) ∈𝐴𝑟𝑝(𝛴) and ∃𝛤 ′′ ∈ 𝜌(𝛤 ), 𝛤 ′ ⊆ 𝛤 ′′}.

Assume that (𝛥, 𝜓) ∈ (𝜌(𝛤 ))∙. Since 𝜌(𝛤 ) = {𝛤 ′′ ∣ 𝛤 ′′ ∈𝐴𝑟𝑏(𝛴) and 𝛤 ′′ ⊆ 𝛤 }, 𝛥 ⊆ 𝛤 . Therefore, (𝛥, 𝜓) ∈ 𝜇(𝛤 ).
Assume that (𝛥, 𝜓) ∈ 𝜇(𝛤 ). Then (𝛥, 𝜓) is a premise-conclusion argument and 𝛥 ⊆ 𝛤 . By Lemma 3, 𝛥 is a base argument. Therefore, 

𝛥 ∈ 𝜌(𝛤 ). It follows that (𝛥, 𝜓) ∈ (𝜌(𝛤 ))∙. □

The following proposition shows that preferred extensions and the grounded extension in 𝐅𝐃𝐷𝐷
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

are closely related to 
the maximal consistent subsets of the knowledge base. It is proved with the relevant results in 𝔻2

𝛴
in the last section via extensional 

equivalence.

Proposition 16. Let (, ⊢) be an abstract logic and 𝛴 a knowledge base.

1. For any 𝐒 ⊆𝐴𝑟𝑝(𝛴), 𝐒 is a preferred extension in 𝐅𝐃𝐷𝐷
𝛴

(or 𝐅𝐃𝐷𝑈
𝛴

) iff there exists 𝛤 ∈𝐌𝐂(𝛴) such that 𝐒 = 𝜇(𝛤 ).
22

2. 𝐒 = 𝜇(
⋂

𝐌𝐂(𝛴)) is the grounded extension in 𝐅𝐃𝐷𝐷
𝛴

(or 𝐅𝐃𝐷𝑈
𝛴

).
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Proof. (1) Since 𝔻2
𝛴

and 𝐅𝐃𝐷𝐷
𝛴

(or 𝐅𝐃𝐷𝑈
𝛴

) are bisimilar (Proposition 2), the following biconditionals hold:

𝐒 is a preferred extension in 𝐅𝐃𝐷𝐷
𝛴

(or 𝐅𝐃𝐷𝑈
𝛴

)

(Corollary 1) iff 𝐒∙ is a preferred extension in 
𝔻2
𝛴

(Proposition 12) iff ∃𝛤 ∈𝐌𝐂(𝛴),𝐒∙ = 𝜌(𝛤 )

(Item (2) in Lemma 6) iff ∃𝛤 ∈𝐌𝐂(𝛴), (𝐒∙)∙ = (𝜌(𝛤 ))∙
(∗) iff ∃𝛤 ∈𝐌𝐂(𝛴),𝐒 = (𝜌(𝛤 ))∙

(Lemma 14) iff ∃𝛤 ∈𝐌𝐂(𝛴),𝐒 = 𝜇(𝛤 ).

The top-to-bottom direction of (∗) follows from Item (3) in Lemma 6 and the other direction follows from the fact that (.)∙ is a 
bijection.

(2) By Corollary 1, it suffices to show that (𝜇(
⋂

𝐌𝐂(𝛴)))∙ is the grounded extension in 𝔻2
𝛴

. By Proposition 14, 𝜌(
⋂

𝐌𝐂(𝛴)) is 
the grounded extension in 𝔻2

𝛴
. By Lemma 14, (𝜌(

⋂
𝐌𝐂(𝛴)))∙ = 𝜇(

⋂
𝐌𝐂(𝛴)). By Lemma 6,

𝜌(
⋂

𝐌𝐂(𝛴)) = ((𝜌(
⋂

𝐌𝐂(𝛴)))∙)∙ = (𝜇(
⋂

𝐌𝐂(𝛴)))∙.

It follows that (𝜇(
⋂

𝐌𝐂(𝛴)))∙ is the grounded extension in 𝔻2
𝛴

. □

The following proposition shows that preferred extensions, stable extensions and semi-stable extensions are identical in 𝐅𝐃𝐷𝐷
𝛴

and 
𝐅𝐃𝐷𝑈
𝛴

. It is proved with Proposition 13 for 𝔻2
𝛴

via extensional equivalence.

Proposition 17. Let (, ⊢) be an abstract logic, 𝛴 a knowledge base. Let 𝐒 ⊆𝐴𝑟𝑝(𝛴). Then the following statements are equivalent:

1. 𝐒 is a preferred extension in 𝐅𝐃𝐷𝐷
𝛴

∕𝐅𝐃𝐷𝑈
𝛴

.

2. 𝐒 is a stable extension in 𝐅𝐃𝐷𝐷
𝛴

∕𝐅𝐃𝐷𝑈
𝛴

.

3. 𝐒 is a semi-stable extension in 𝐅𝐃𝐷𝐷
𝛴

∕𝐅𝐃𝐷𝑈
𝛴

.

Proof. Assume that 𝐒 is a preferred extension in 𝐅𝐃𝐷𝐷
𝛴

. By Corollary 1, 𝐅𝐃𝐷𝐷
𝛴

and 𝔻2
𝛴

are 𝑋-extensionally equivalent, where 𝑋 ∈
{𝑐𝑜, 𝑠𝑡, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠, 𝑖𝑑, 𝑒𝑎}. Therefore, 𝐒∙ is a preferred extension in 𝔻2

𝛴
. By Proposition 13, 𝐒∙ is a stable extension in 𝔻2

𝛴
. Since 𝐅𝐃𝐷𝐷

𝛴

and 𝔻2
𝛴

are 𝑋-extensionally equivalent, (𝐒∙)∙ is a stable extension in 𝐅𝐃𝐷𝐷
𝛴

. By Lemma 6, 𝐒 = (𝐒∙)∙. It follows that 𝐒 is a stable 
extension in 𝐅𝐃𝐷𝐷

𝛴
. Other cases can be proved similarly. □

The following proposition shows that the grounded extension, ideal extensions and eager extensions are identical in 𝐅𝐃𝐷𝐷
𝛴

and 
𝐅𝐃𝐷𝑈
𝛴

. It is proved with Proposition 15 for 𝔻2
𝛴

via extensional equivalence.

Proposition 18. Let (, ⊢) be an abstract logic, 𝛴 a knowledge base. Let 𝐒 ⊆𝐴𝑟𝑝(𝛴). Then the following statements are equivalent:

1. 𝐒 is the grounded extension in 𝐅𝐃𝐷𝐷
𝛴

∕𝐅𝐃𝐷𝑈
𝛴

.

2. 𝐒 is an ideal extension in 𝐅𝐃𝐷𝐷
𝛴

∕𝐅𝐃𝐷𝑈
𝛴

.

3. 𝐒 is an eager extension in 𝐅𝐃𝐷𝐷
𝛴

∕𝐅𝐃𝐷𝑈
𝛴

.

Proof. The proof is similar to that of Proposition 17. Proposition 15 is used in place of Proposition 13. □

9. Related works and conclusion

This paper contributes to structured argumentation. First, we compare base argumentation and premise-conclusion argumentation 
in terms of argument evaluation. To this aim, we define the notion of extensional equivalence between base argumentation and 
premise-conclusion argumentation and define the notion of bisimulation between a base argumentation framework and a premise-

conclusion argumentation framework. We show that the following BAFs and PAFs are bisimilar: 𝔻1
𝛴

and 𝐅𝐃𝐷
𝛴

, 𝔻2
𝛴

and 𝐅𝐃𝐷𝐷
𝛴

, 𝔻2
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

, 𝔻3
𝛴

and 𝐅𝐃𝑈
𝛴

. We show that bisimulation implies extensional equivalence. This means that base argumentation is as good 
as premise-conclusion argumentation under certain conditions. With its obvious simplicity, base argumentation may be preferred in 
some cases.

Second, to illustrate how base argumentation, bisimulation and extensional equivalence can help to deepen our understanding 
23

of premise-conclusion argumentation, we investigate the extensional properties of a base argumentation framework 𝔻2
𝛴

and export 
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them to premise-conclusion argumentation frameworks 𝐅𝐃𝐷𝐷
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

via bisimulation and extensional equivalence. We show that 
there are essentially three kinds of extensions in 𝔻2

𝛴
, which are complete, preferred and grounded extensions, though seven kinds of 

extensions are considered in this paper and that the same results hold in 𝐅𝐃𝐷𝐷
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

. This result contributes to the question of 
whether the various extensional semantics are essentially different if arguments and attack relations are defined in terms of deductive 
logics. The new results about premise-conclusion argumentation are (1) there are essentially three kinds of extensions in 𝐅𝐃𝐷𝐷

𝛴
and 

𝐅𝐃𝐷𝑈
𝛴

and (2) the extensions of 𝐅𝐃𝐷𝐷
𝛴

and 𝐅𝐃𝐷𝑈
𝛴

are identical, though their attack relations are distinct.
Now we discuss our results in the context of the literature.

Base argumentation and inconsistency handling The main question in inconsistency handling is what can be meaningfully inferred from 
an inconsistent knowledge base. Base argumentation is a system for inconsistency handling since it selects acceptable sets of subsets 
of the knowledge base through extensional semantics in abstract argumentation [15,31,10,16,11].

There are two types of non-inconsistency-tolerant methods discussed in the literature.4

The first type of methods is based on the notion of maximal consistent sets. Rescher and Manor [26] mentioned that a formula 
is accepted as a consequence of a knowledge base when it can be classically inferred from all maximal consistent subsets of the 
knowledge base (this is the so-called universal consequence) or from at least one maximal consistent subset (this is the so-called 
existential consequence). They pointed out that the first is too narrow, and the second is too broad and may include mutually inconsistent 
propositions. For this, they discussed preferential consequences defined using preference criteria.

The second type of methods is based on argumentation. Elvang-Göransson et al. [17] conceived arguments as premise-conclusion 
pairs (𝛤 , 𝜑) where 𝛤 is a subset of the possibly inconsistent knowledge base and there exists a natural-deduction proof of 𝜑 from 
𝛤 . It classifies arguments into five classes of degrees of acceptability. Benferhat et al. [4] refined the notion of arguments requiring 
that the set of premises is consistent and subset-minimal, i.e., 𝛤 is a minimal subset of the knowledge base that logically deduces 
𝜑. Such arguments are called premise-conclusion arguments in this paper. Benferhat et al. [4] also suggested that a proposition can be 
inferred from an inconsistent knowledge base if the knowledge base contains a deductive argument that supports this proposition, 
but no deductive argument that supports its negation. Another argumentative proposal was given in Besnard and Hunter [6]. Apart 
from deductive arguments, it defines various kinds of counter-arguments and then formalizes the notion of argument structures which 
exhaustively collate arguments and counter-arguments. Argument structures are evaluated through aggregation functions. The last kind 
of argumentative methods is based on abstract argumentation frameworks (AFs). Perhaps the first paper to consider logical instan-
tiations of AFs was Cayrol [12] which instantiates Dung’s proposal with deductive arguments based on classical logic. Gorogiannis 
and Hunter [20] also instantiated abstract argumentation with premise-conclusion arguments and investigated postulates for attack 
relations and extensions. We refer the readers to Section 2.3 of Prakken [25] for a general overview of argumentation-based inference 
and Arieli et al. [2] for a survey on logic-based approaches to formal argumentation.

Difference between various extensional semantics Whether the various extensional semantics are essentially different if arguments and 
attack relations are defined in terms of deductive logics is an important question in the literature. This paper shows that there are 
essentially three kinds of extensions in 𝔻2

𝛴
: complete, grounded and preferred extensions. Grounded and preferred extensions are 

closely related to maximal consistent subsets of the knowledge base. These results also hold for premise-conclusion argumentation 
frameworks 𝐅𝐃𝐷𝐷

𝛴
and 𝐅𝐃𝐷𝑈

𝛴
by extensional equivalence. There are similar results about premise-conclusion argumentation in the 

literature.
Cayrol [12] showed that if direct undercut (i.e., 𝐃𝐷𝑈 ) is used, then stable extensions of an argumentation system correspond 

exactly to maximal (for set inclusion) consistent subsets of the knowledge base. Vesic and van der Torre [32] identified four conditions 
describing a class of attack relations which return extensions corresponding exactly to the maximal (for set inclusion) consistent 
subsets of the knowledge base and showed that it is possible to obtain a meaningful result which does not correspond to the maximal 
consistent subsets of the knowledge base. Amgoud and Besnard [1] showed that for an argumentation system that satisfies consistency 
and closure under sub-arguments and a conflict-dependent5 attack relation, and any preferred extension 𝐒, there exists 𝛤 ∈𝐌𝐂(𝛴)
such that S(𝐒) = 𝛤 .

Base argumentation and assumption-based argumentation Assumption-based argumentation (ABA) [29,14,3,22] is a structural argu-
mentation system.

According to [22], an ABA framework consists of a deductive system, a non-empty set of assumptions and a contrary function 
mapping assumptions to a formula in the language. A tree-based argument in ABA is of the form 𝑆 ⊢𝑅 𝜑, where 𝑆 is the set of 

premises, 𝜑 is the conclusion and 𝑅 is the set of rules leading from 𝑆 to 𝜑. From a tree-based argument 𝑆 ⊢𝑅 𝜑, one can obtain a core 
argument (𝑆, 𝜑). A set of assumptions 𝐴 attacks a set of assumptions 𝐵 if 𝐴 ⊢𝑅 𝜓 for some 𝜓 ∈ 𝐵, or equivalently, if there is a core 
argument (𝐴, 𝜓) for some 𝜓 ∈ 𝐵. ABA selects acceptable subsets of the assumptions through argumentative semantics. Evaluations 
through tree-based arguments and core arguments are semantically equivalent [22].

4 For a review of inconsistency-tolerant methods in inconsistency handling, see e.g., [5].
24

5 An attack relation 𝑑 is conflict-dependent if ((𝛤 , 𝜑), (𝛥, 𝜓)) ∈𝑑 implies 𝛤 ∪ 𝛥 is inconsistent.
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Extensional equivalence (Definition 12) between a base argumentation framework and a premise-conclusion framework is similar 
to Theorem 4.3 in [14], which is about the correspondence between ABA frameworks and the abstract argumentation frameworks 
induced by ABA frameworks.

Moreover, the base argumentation framework 𝔻2
𝛴

can be seen as an instance of ABA by setting the deductive system to be the 
abstract logic considered in this paper, the set of assumptions to be the knowledge base in base argumentation, and the contrary 
function to be the negation in abstract logic. Recall that the attack relation 𝔻2 is defined as follows: 𝛤 𝔻2-attacks 𝛥 if there exists 
𝜓 ∈ 𝛥 such that 𝛤 ⊢ ¬𝜓 .

There are two differences. First, acceptable candidates in ABA are conflict-free subsets of the assumptions, while those in 𝔻2
𝛴

are 
base arguments, each of which is a finite consistent subset of the assumptions and does not have a logically equivalent proper subset. 
The notion of being conflict-free in ABA is equivalent to the notion of consistency when we see 𝔻2

𝛴
as an instance of ABA. Second, ABA 

selects acceptable subsets of the assumptions, while 𝔻2
𝛴

selects acceptable sets of subsets of the assumptions. Such a difference can 
be neutralized by noticing that each complete extension in 𝔻2

𝛴
is of the form 𝜌(𝛤 ), where 𝜌(𝛤 ) = {𝛤 ′ ⊆ 𝛤 ∣ 𝛤 ′ is a base argument}, 

and viewing 𝛤 as the representative element.

Future work Future work includes base argumentation for non-flat knowledge base, i.e., knowledge base with priority/prefer-
ence/probability, and base argumentation with concrete formal logics, like fuzzy logic, relevant logic, probability logic, etc.
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