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Abstract. We propose a novel knowledge representation method for the Default
Logic paradigm by developing a proof calculus that yields arguments and counter-
arguments in which defaults serve as explicit objects of reasoning. The proposed
formalism allows for more transparent default reasoning and the use of explain-
ability methods in formal argumentation. In particular, we provide a sound and
complete argumentative characterization of Default Logic, by demonstrating that
argumentation frameworks instantiated by the arguments derivable in our calculus
yields the same inference relation as that of Default Logic. The modularity of our
approach allows for various modifications of Default Logic. We demonstrate this
by extending our calculus with a rule that enables disjunctive defeasible reasoning.
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1. Introduction

A central challenge of knowledge bases is to adequately reason with incomplete and in-
consistent information. A multitude of defeasible reasoning formalisms has been devel-
oped to address these challenges. In these formalisms, prior inference may be retracted
under extended context, yielding nonmonotonic (nm) inference relations. Formal argu-
mentation, starting with the work of Dung [1], offers a unifying framework for defeasible
reasoning and many nm formalisms can be embedded in it (see [2] for an overview.) A
notably attractive feature of formal argumentation is its ability to explicitly model con-
flicts, which is particularly promising with respect to the challenge of explainability in
knowledge representation and reasoning [3].

In the quest for more transparent and explainable formal systems, reasons and ex-
plicit reasoning with reasons play a pivotal role. The philosophical study of reasons
is well-founded and, as pointed out by Horty [4], Reiter’s [5] well-established Default
Logic (and its many extensions) is particularly advantageous since it adopts rules as rea-
sons. In recent work, van Berkel and Straßer [6] develop a proof-theoretic approach to
logical argumentation in which reasons are modeled as explicit objects of reasoning.
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Zheng Zhou, zhouzhenglogic@mail.bnu.edu.cn.
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Their approach establishes strong ties between nm formalisms (such as classes of In-
put/Output logics [7]) and formal argumentation.

The work [6] by van Berkel and Straßer does not immediately extend to Default
Logic, since the latter submits arguments (and implied attacks between them) to stricter
conditions: all used defaults in the construction of a (counter)argument must be triggered.
In this work, we develop a modular proof-calculus, referred to as Default Calculus (DC),
that generates arguments of normal Default Logic and whose arguments, instantiated in
an argumentation framework, yield an argumentative characterization of Default Logic.

Our contributions are conceptual as well as technical. From a conceptual point
of view, we develop a novel knowledge representation method for the Default Logic
paradigm that involves (i) a proof-theoretic formalism, (ii) the unifying formalism of for-
mal argumentation, and (iii) the ever more important philosophy of reasons. With respect
to the latter, DC constitutes a more transparent approach to default reasoning: it uses
labels to indicate the role of formulas in the reasoning and yields derivations as a justi-
fication of which defaults are used for which conclusions. From a technical viewpoint,
the main contribution of this paper is the characterization of Default Logic by means of
DC-induced argumentation frameworks. The modularity of our approach is particularly
promising for obtaining variants of Default Logic. We provide an extension of our calcu-
lus with a rule for “reasoning by cases,” yielding a calculus whose induced argumentation
frameworks are sound and complete for reasoning disjunctively in Default Logic.

Outline: Section 2 will see some preliminaries, recalling the essentials of Default
Logic. Thereafter, in Section 3 we define our Default Calculus (DC). In Section 4, we de-
fine argumentation frameworks instantiated with DC-derivable default arguments which
are shown sound and complete for Default Logic. We propose a sound and complete ex-
tension of DC with disjunctive reasoning in Section 5. In Section 6, we discuss related
and future work. The proofs are provided in the technical appendix.

2. Preliminaries: Default Logic and a Running Example

In this paper, we focus on normal Default Logic [5] and work with the well-established
extension building approach. We use a propositional language L containing the usual
connectives ¬,∧,∨,→. We use p,q, . . . to denote atoms, ϕ,ψ, . . . to denote arbitrary
formulas of L , and E,F, . . . for arbitrary subsets of L . Furthermore, let

L δ = {(ϕ,ψ) | ϕ,ψ ∈ L }
be the language of defaults. We give a default δ = (ϕ,ψ) ∈ L δ an epistemic interpreta-
tion: “ϕ provides a (prima facie, defeasible) reason to believe ψ .” We write ϕ = body(δ )
and ψ = head(δ ) for the default’s body, respectively head. We use �CL for classical
entailment and Cn(E) = {ϕ ∈ L | E �CL ϕ} for the deductive closure of E ⊆ L .

Definition 1. A default theory is of the form K= 〈F ,D〉, where F ⊆L is a consistent
factual context (i.e., F 
�CL ⊥) and D ⊆ L δ a set of defaults.

Example 1. Consider the default theory K containing the facts F = {w} and defaults
D = {(w,¬o),(w,h),(h,o)}. Although we use literals in K, our approach generalizes to
the full propositional language. We interpret o as “the window is open,” w as “it is win-
ter,” and h as “the hearth is on.” In an epistemic reading, K expresses a scenario in which
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it is winter, with the default (w,¬o) as “winter is a reason to believe that the window
is not open” (this way warmth is preserved), (w,h) as “winter is a reason to believe the
hearth is on,” and (h,o) as “having the hearth on is a reason to believe the window is
open” (this way fresh air gets in). Intuitively, K should give rise to the belief that the
hearth is on, but leave us agnostic concerning the question whether the window is open.
The defaults (w,¬o) and (h,o) (the latter triggered by (w,h)) are mutually exclusive. Our
example is a variant of the order puzzle [4], without preferences.

Suppose that we find out that the window is open, that is, F ′ = {w,o}. Then, in
addition to F ′ we only conclude that the hearth is on. The default (w,¬o) must now not
be applied since it conflicts with our knowledge that the window is open, i.e., o ∈ F .

Definition 2. Let K = 〈F ,D〉 be a default theory. Let σ = 〈δi〉n
1 be a (possibly

empty) sequence of defaults δi ∈ D . We define the following iterative detachment pro-
cedure Det(σ) =

⋃
i≥0Det

i
F (σ), where Det0

F (σ) = Cn(F ) and Deti+1
F (σ) = Cn(F ∪

{head(δ ) | δ ∈ σ ,body(δ ) ∈ Deti
F (σ)}).

A sequence σ = 〈δi〉n
i=1 is a process in case for each 1 ≤ i < n, body(δi+1) ∈

Det(〈δ j〉i
j=1) (in this case, Det(σ) =Cn(F ∪{head(δ ) | δ ∈ σ})). σ is consistent iff for

all δ ∈ σ , ¬head(δ ) /∈ Det(σ), else it is inconsistent. σ is complete if for all δ ∈ D \σ ,
if body(δ ) ∈ Det(σ), ¬head(δ ) ∈ Det(σ). σ is proper iff it is consistent and complete.

Definition 3. Let K be a default theory. A set of formulas E = Det(σ) ⊆ L is a de-
fault extension of K iff σ is a proper process. We define skeptical (s) and credulous (c)
nonmonotonic inference relations based on K as follows:

• K |∼s ϕ whenever for each default extension E of K we have ϕ ∈ E.
• K |∼c ϕ whenever there is a default extension E of K such that ϕ ∈ E.

Example 2. [Ex. 1 cont.] Given F = {w}, we have two proper processes, σ1 =
〈(w,h),(h,o)〉 and σ2 = 〈(w,¬o),(w,h)〉, yielding the extensions E1 = Cn({w,h,o}) and
E2 = Cn({w,h,¬o}). So, K |∼s h, K |∼s w, but K |
∼s¬o. Similarly, K |∼c o,¬o,h, but
K |
∼c o∧¬o since no extension concludes both o and ¬o. Given F ′ = {w,o}, σ2 is not a
process since its detachable belief ¬o contradicts the factual input o ∈ F ′. Since there is
only one extension, skeptical and credulous inference coincide. We have K |∼s w∧h∧o.

3. A Default Calculus

We now introduce a sequent-style proof calculus for Default Logic, called Default
Calculus (DC). Sequent calculi are defined by sets of rules that stipulate under which
conditions arguments (referred to as sequents) may be derived from other arguments [8].
An argument is of the form Γ ⇒ Δ where Γ and Δ are finite (possibly empty) sets of
formulas and is read as “Γ provides support/reasons for concluding Δ” [6]. In order to en-
hance the modularity and transparency of our default reasoning, we use labels to differ-
entiate the roles that formulas take in an argument: we use the input label ‘i’ for formulas
given by the factual context and the output label ‘o’ for the formulas detached from input
and defaults. Let L i = {ϕ i | ϕ ∈ L } be the input language and L o = {ϕo | ϕ ∈ L }
the output language. In our setting, the output formulas are beliefs, but in other contexts,
such as deontic reasoning, they may be obligations [6]. We write Δx ⊆L x to denote a set
of x-labeled formulas (with x ∈ {i,o}). A default argument is an argument of the form
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�LK Γ ⇒ Δ
Ax Γ,Δ ⊆ L

Γx ⇒ Δx
Γ

TP
ϕ i ⇒ ϕo

ϕ i,Γ ⇒ ψo

SDet ϕo,Γ ⇒ ψo

Γ
FDet

ϕ i,(ϕ,ψ)⇒ ψo Def
ϕ i,¬ψo ⇒¬(ϕ,ψ)

Γ1 ⇒ ϕx ϕx,Γ2 ⇒ Δ
Cut Γ1,Γ2 ⇒ Δ

Figure 1. Rules of DC (Def. 4). The rules Ax, FDet, and TP introduce initial sequents, and x ∈ {i,o}.

wi,(w,¬o)⇒¬oo

Recalling Ex. 1, the argument expresses that “we are licensed to believe that the windows
are not open since it is winter (wi) and winter is a reason to believe that the windows
are not open (w,¬o).” Furthermore, the use of defaults as objects of reasoning has the
particular advantage that we can also construct arguments that conclude under which
conditions certain defaults are not applicable (cf. [6]). We use a language of negated de-
faults L δ = {¬(ϕ,ψ) | (ϕ,ψ) ∈ L δ} to express default inapplicability. The argument

wi,oo ⇒¬(w,¬o)

states that “given that it is winter and the belief that the window is open, the default
(w,¬o) is inapplicable” (since it implies contradictory beliefs). In DC, we also derive
arguments like wi,(w,h),(h,o)⇒¬(w,¬o) stating that certain defaults jointly conclude
the inapplicability of others. In defining DC, we use the language L DC = L i ∪L o ∪
L δ ∪L δ and assume the adequate sequent calculus LK for classical logic [8].

Definition 4 (Default Calculus (DC)). A DC-sequent is of the form Γ ⇒ Δ where Γ ⊆
L DC is a regular finite set and Δ is a set restricted to at most one element from L DC.
The calculus DC is defined by the rules Ax,TP,FDet,SDet,Def,Cut in Figure 1.

A DC-derivation of Γ ⇒ Δ is a tree-like structure where the leaves are initial se-
quents, whose root is Γ ⇒ Δ, and whose rule-applications are instances of DC-rules. If
Γ ⇒ Δ is DC-derivable, we write �DC Γ ⇒ Δ.

We briefly discuss the DC rules. All propositional formulas in DC-arguments are la-
beled i or o. The rule Ax takes labeled versions of LK-derivable sequent as initial sequent
(hence, LK-rules are not required to be part of DC). TP ensures the property of identity,
that is, all factual input is among the output. It is also referred to as “throughput.” FDet

expresses what is known as “factual detachment,” stipulating how a fact ϕ i and default
(ϕ,ψ) enable the detachment of ψo. The rule SDet enables the “successive detachment”
of formulas from defaults (see Ex. 3 for an illustration). The defeasible nature of default
reasoning is captured by the rule Def, which expresses that in case a default δ is triggered
(so, its body is derivable) but we have reason to believe that its head is false, then we
should not apply δ . By concluding inapplicable defaults only on elementary default ar-
guments, we assure that the defaults used as reasons in a defeating argument are properly
triggered (this is illustrated in Ex. 3).2 The rule Cut is defined as usual [8].

Example 3. Reconsider Ex. 1. Using DC, we may directly derive the following argu-
ments from FDet: a1 : wi,(w,¬o)⇒¬oo and a2 : wi,(w,h)⇒ ho. Furthermore, we may
derive the following complex argument using the SDet for successive detachment:

2This is the key difference to the calculus in [6] which allows, for instance, for arguments such as
¬qo,(p,q)⇒¬(�, p), where a non-triggered default provides a reason to not apply a triggered default.
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a2

hi,(h,o)⇒ oo

SDet
ho,(h,o)⇒ oo

Cut
a3 : wi,(w,h),(h,o)⇒ oo

We may also derive the inconsistent a4 : wi,(w,h),(h,o),(w,¬o)⇒⊥o. That these
defaults cannot be jointly applied is expressed by the arguments b1 : wi,(w,h),(h,o)⇒
¬(w,¬o) and b2 : wi,(w,¬o),(w,h)⇒¬(h,o). These arguments also show that the two
processes of Ex. 2 are mutually exclusive in DC too. We show the derivation of b2:

a2

a1 ¬oo,ho,⇒ (h∧¬o)o

Cut
wi,ho,(w,¬o)⇒ (h∧¬o)o

Cut
wi,(w,¬o),(w,h)⇒ (h∧¬o)o

Def
hi,¬oo ⇒¬(h,o)

SDet
ho,¬oo ⇒¬(h,o)

AND*

(h∧¬o)o ⇒¬(h,o)
Cut

b2 : wi,(w,¬o),(w,h)⇒¬(h,o)

So far, all arguments are derivable for F = {w} and F ′ = {w,o} in Ex. 1. Using
TP, in case of F ′ we may additionally derive the arguments a5 : wi ⇒ wo, a6 : wi,oi ⇒
(w∧o)o, and the defeating argument b3 : wi,oi ⇒¬(w,¬o) (which cannot be defeated).

The calculus in [6] allows for the derivation of x : wi,(w,¬o),(h,o)⇒¬(w,h), which
is not allowed by default reasoning since it uses the untriggered (h,o) as a reason. That
x is not DC-derivable follows from the soundness and completeness result in Prop. 1.

4. Formal Argumentation

DC generates two important types of argument: arguments that detach conclusions from
(triggered) defaults and arguments that provide reasons for why, in light of logical con-
sistency, some defaults are inapplicable in a given context. The second type of argument
comprises the defeasible nature of default reasoning and imposes consistency restrictions
on the process of detachment. We use both types to model conflicts in the knowledge
base using formal argumentation. In brief, an argument of the form Δ ⇒¬(ϕ,ψ) attacks
any argument Γ,(ϕ,ψ)⇒ Σ that uses the inapplicable (ϕ,ψ) as one of its reasons.

Formal argumentation, starting with the work of Dung [1], provides for an effec-
tive method for explicitly modeling conflicts in knowledge bases and has proven to be a
unifying framework for the characterization of nm logics (e.g., see [2]). Its central con-
cept is that of an argumentation framework AF = 〈Arg,Att〉 which is a directed graph
consisting of arguments a,b,c, ... ∈ Arg and an attack relation Att ⊆ Arg×Arg holding
between these arguments. Argumentation semantics deals with the identification of sets
of arguments that are (under varying conditions) jointly defensible against attacks [9].

Below, we define the instantiation of AF s with DC arguments, where attacks are
based on default inapplicability. In constructing such an AF for a given knowledge base
K, we are only interested in those arguments that draw their support from K.

Definition 5. Let DC be a calculus and K = 〈F ,D〉 a (labeled) knowledge base. A
DC-instantiated argumentation framework AF (K) = 〈Arg,Att〉 is defined accordingly:

• Γ ⇒ Δ ∈ Arg iff Γ ⇒ Δ is DC-derivable and Γ ⊆ F ∪D ;
• (a,b) ∈ Att iff a : Γ ⇒¬(ϕ,ψ) ∈ Arg and b : (ϕ,ψ),Σ ⇒ Θ ∈ Arg.

Let Arg(Σ) denote the set of DC-derivable arguments Γ ⇒ Δ for which Γ ⊆ Σ ⊆ L DC.
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a1 : wi,(w,¬o)⇒¬oo a3 : wi,(w,h),(h,o)⇒ oo

b1 : wi,(w,h),(h,o)⇒¬(w,¬o) a2 : wi,(w,h)⇒ ho

a5 : wi ⇒ wo

b2 : wi,(w,¬o),(w,h)⇒¬(h,o)

a4 :
[

wi,(w,h),
(h,o),(w,¬o)

]
⇒⊥o

b3 : wi,oi ⇒¬(w,¬o)

a6 : wi,oi ⇒ (w∧o)o

Figure 2. AF of DC-arguments from Ex. 3. The arrows denote attacks, e.g., the arrow from b1 to a1 denotes
(b1,a1) ∈Att. The arguments for F and F ′ are Arg= {a1,a2,a3,a4,a5,b1,b2}, resp. Arg′ =Arg∪{a6,b3}.

Example 4. Fig. 2 contains the AF (K) induced by the DC-arguments from Ex. 3 (the
framework is partial, which suffices for our purpose). The arguments for F and F ′
are Arg= {a1,a2,a3,a4,a5,b1,b2}, respectively Arg′ = Arg∪{a6,b3} (differentiated by
the dashed-line in Fig. 2). Arrows denote attacks, e.g., the arrow from b1 to a1 denotes
(b1,a1) ∈ Att. The arrow from b3 to a1,a4 and b2 only occur when F ′ is considered.

Our aim is to identify sets of arguments that yield an inference relation identical to
entailment in Default Logic. The notion of stable semantics suffices for our purpose [2].

Definition 6. Let AF = 〈Arg,Att〉 be an argumentation framework and let A ⊆ Arg:
• A is conflict-free if for each (a,b) ∈ Att, if a ∈ A , then b 
∈ A .
• A is stable if A is conflict-free and ∀b ∈ Arg\A , ∃a ∈ A such that (a,b) ∈ Att.

We define credulous (c) and skeptic (s) nonmonotonic inference accordingly:
(1) AF |∼c

stable ϕ iff there is a stable set A and a = Δ ⇒ ϕ ∈ A .
(2) AF |∼s

stable ϕ iff for each stable set A , there is an a = Δ ⇒ ϕ ∈ A .

Example 5 (Ex. 1 cont.). For F , there are two stable extensions: A1 = {a2,a3,a5,b1}
(colored green in Fig. 2) and A2 = {a1,a2,a5,b2}. It is clear that the two extensions are
mutually exclusive due to attacks between b1 and b2. Argument a2 is part of each stable
extension, and so AF (K) |∼s

stable ho but AF (K) |
∼s
stable oo and AF (K) |
∼s

stable¬oo.
We do have AF (K) |∼c

stable oo and AF (K) |∼c
stable¬oo. The inconsistent argument a4

(colored red in Fig. 2) is part of no stable extension. In fact, AF (K) |
∼c
stable(o∧¬o)o.

For F ′ of Ex. 1, we include a6 and b3, where b3 states that (w,¬o) is inapplicable
w.r.t. o ∈ F ′. Since a6 does not use any defaults, it cannot be attacked. So, there is only
one stable extension A3 = {a2,a3,a5,a6,b1,b3} ⊆ Arg′ and AF (K) |∼s

stable wo,ho,oo.

Ex. 5 shows that AF (K) gives the same outcome as the extension building method
of Default Logic in Ex. 2. This is because the two approaches are sound and complete
for each other. We prove this by a correspondence between default extensions and the
propositional conclusions of DC-arguments in stable extensions (see technical appendix).

Proposition 1. (1) For every default theory K and for every stable extension A of
AF (K) there is a default extension E of K for which E = {ϕ | Δ ⇒ ϕo ∈ A }.

(2) For every K and default extension E of K there is a stable extension A of
AF (K) for which E = {ϕ | Δ ⇒ ϕo ∈ A }.
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Corollary 1. K |∼s ϕ iff AF (K) |∼s
stable ϕo and K |∼c ϕ iff AF (K) |∼c

stable ϕo.

5. Disjunctive Default Reasoning

Default Logic, as in [5], faces limitation when reasoning with disjunctions. For instance,
if a default theory contains δ1 = (�, p∨ q), δ2 = (p,u) and δ3 = (q,u) we cannot con-
clude u on the basis of concluding p∨ q from δ1. In order to do so, we would have to
reason by cases: By δ1, we know that p is the case or q. In the first case, we can apply δ2
to reason towards u, in the second case, we proceed analogously using δ3. In this section,
we set out to supplement default reasoning to reason more effectively with disjunctions.
We do this in three steps: First, we define disjunctive Default Logic; we, then, generalize
the default calculus; and, last, we show that the generalized calculus is sound and com-
plete for the disjunctive Default Logic and, so, represents disjunctive default inference.

A natural way to generalize processes for disjunctive reasoning is to consider dis-
junctive triggering of sets of defaults. For instance, the set {δ2,δ3} is triggered in the con-
text of (�, p∨q) since we can derive the disjunction of the bodies of δ2 and δ3 (namely,
p∨q). So, instead of letting processes be sequences of defaults, we consider sequences
of (finite) sets of defaults 〈Ξ1, . . . ,Ξn〉. Just like for processes (Def. 2), we demand that
each member of the sequence is triggered in view of the previous members and, so,
there is a simple way of checking the triggering condition: we only have to see whether
body(δk+1) ∈ Cn(F ∪ {head(δi) | 1 ≤ i ≤ k}). Leveraging this simple approach, we
could simply check whether

∨
δ∈Ξk+1

body(δ ) ∈ Cn(F ∪{∨δ∈Ξi
head(δ ) | 1 ≤ i ≤ k}).

However, caution is advised when considering examples like the following.

Example 6. Let K = 〈F ,D〉 with D = {(p,u),(q,v),(p,v),(q,u),(u,s)} and F =
{p∨q}. Consider σ = 〈Ξ1 = {(p,u),(q,v)},Ξ2 = {(p,v),(q,u)}〉. Should (u,s) be con-
sidered as triggered by σ? We have two options: (a) we don’t consider it triggered since
u /∈ Cn({p∨ q,u∨ v}), or (b) we consider it triggered since

⋃
σ already contains the

defaults to obtain u, namely (p,u) and (q,u). So, implicitly, a reasoner committing to σ
already has an argument for u and should commit to it.

To highlight the difference between (a) and (b) consider adding ¬u to F resulting in
K

′ = 〈F ′,D〉. Should we consider σ consistent in K
′? According to (a) one may argue,

yes, since the inconsistency is not apparent when considering Cn({p∨ q,u∨ v,v∨ u}).
According to (b) one may argue, no, since the inconsistency is implicit in σ : any way of
completing σ (e.g., by extending it with Ξ3 = {(p,u),(q,u)} ⊆⋃

σ ) makes the inconsis-
tency apparent; a reasoner committing to σ is already on lost ground w.r.t. consistency.

In what follows, we approach default reasoning from the perspective of (b), accord-
ing to which we consider what can be inferred from σ = 〈Ξ1, . . . ,Ξn〉 by combining
defaults present in

⋃
σ . It gives rise to the following generalized definitions of Section 2.

Definition 7. Let K = 〈F ,D〉 be a default theory and σ = 〈Ξi〉n
i=1 be a sequence of

finite Ξi ⊆ D . We let DetDF (σ) =
⋃

i≥0DetD
i
F (σ), where DetD0

F (σ) = Cn(F ) and

DetDi+1
F (σ) = Cn(F ∪{∨δ∈Ξ head(δ ) | Ξ ⊆⋃

σ ,
∨

δ∈Ξ body(δ ) ∈ DetDi
F (σ)})

Let trigF (σ) = {Ξ ⊆ D |∨δ∈Ξ body(δ ) ∈ DetDF (σ)} (we omit reference to F ).
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Example 7 (Ex. 6 cont.). We have DetD0
F = Cn({p∨ q}), DetD1

F = Cn({p∨ q,u∨
v}) and DetD2

F = Cn({p∨ q,u,v}). Note that p∨ q ∈ DetD1
F (σ) and {(p,u),(q,u)},

{(p,v),(q,v)} ⊆⋃
σ So, u,v ∈ DetD(σ). For this reason, (u,s) ∈ trig(σ).

Definition 8. A sequence σ = 〈Ξi〉n
i=1 is a ∨-process if for all 1 ≤ i < n, Ξi+1 ∈

trig(〈Ξ j〉i
j=1). σ is proper if

1. σ is complete: for all Θ ∈ trig(σ), if Θ\⋃σ 
= /0 then there is a δ ∈ Θ\⋃σ for
which ¬head(δ ) ∈ DetD(σ); and

2. σ is consistent: for all δ ∈⋃
σ , ¬head(δ ) /∈ DetD(σ).

E = DetD(σ) is a disjunctive default extension of K iff σ is a proper ∨-process of K.

Example 8 (Ex. 7 cont.). σ is consistent in K but not proper since {(u,s)} ∈ trig(σ) and
(u,s) /∈⋃

σ , while ¬head((u,s)) /∈ DetD(σ). A proper ∨-process is σ ′ = σ ◦{(u,s)}.

Example 9. Consider a disjunctive generalization of Ex. 1 where p denotes “permis-
sion is asked” and r denotes “the radiator is on.” We define ∨K as F = {w,o} and
D = {(w,¬o),(w,h ∨ r),(h,o),(r,¬o),(h, p),(r, p)}. The disjunctive default (w,h ∨ r)
states that the winter provides reasons to believe that the hearth or the radiator is on.
When the radiator is on, the window is not likely to be open (r,¬o). The hearth or radi-
ator being on, provides reason to believe that permission has been asked, i.e., (h, p) and
(r, p). We have, e.g., the following proper ∨-process: σ1 = 〈{(w,h∨ r)},{(h, p),(r, p)}〉.
Note that {(w,¬o)} ∈ trig(σ1), but ¬o ∈ DetD(σ1) since ¬o ∈ F . Similarly, while Ξ =
{(h,o),(r,¬o)} ∈ trig(σ1) but Ξ 
⊆⋃

σ1. However, ¬¬o = ¬head((r,¬o)) ∈ DetD(σ1).
Now consider the knowledge ∨K′ for which we remove o from the facts. Then, for

instance, σ2 = σ1 ◦{(w,¬o)} is a proper ∨-process. There is, in fact, no proper ∨-process
that does not contain (w,¬o) since there is no way to ‘defeat’ it by inferring ¬¬o.

Remark 1. Input/Output (I/O) logic [7] offers another account of reasoning disjunctively
with defaults (e.g., as norms). The idea is to close a default theory under meta-rules
that generate new defaults. I/O disjunctive reasoning lets one combine two defaults, e.g.,
(ϕ1,ψ) and (ϕ2,ψ), to yield a new default in which the disjunction of the conclusions
is obtained, e.g., (ϕ1 ∨ϕ2,ψ). Other meta-rules are, e.g., right weakening (infer (ϕ,ψ)
from (ϕ,ψ ′), if ψ ′ � ψ) and aggregation (infer (ϕ,ψ1 ∧ϕ2) from (ϕ,ψ1) and (ϕ,ψ2)).

For instance, given K with F = {p∨ q} and D = {(p,s),(q,u),(p∨ q,¬s)}, we
obtain the default (p∨q,s∨u). By aggregation with (p∨q,¬s) and right weakening we
then derive (p∨ q,u). So, u can be detached. The outcome seems rather strong to us.
Although (p∨q,¬s) provides a good reason not to apply (p,s) when reasoning by cases
on the basis of p∨ q, it does not provide an additional reason to still apply (q,u). For
this one would have to reason contrapositively back from ¬s, via (p,s), to ¬p which by
disjunctive syllogism on (p∨ q) would yield q, on the basis of which we could apply
(q,u). This is why we opt for a more cautious form of disjunctive default reasoning.

A similar situation occurs in K
′ with F = {p∨q,¬s} and D = {(p,s),(s,u),(q, t),

(t,u)}. In I/O logic we obtain a default (p∨ q,u) and can reason towards u. In our ap-
proach the reasoning path (p,s),(s,u) is blocked due to the conflict with ¬s. In fact,
σ = /0 is the only proper ∨-process for K′. Note that the only (⊂-minimal) set triggered
by /0 is Ξ = {(p,s),(q, t)}. However, ¬s ∈ DetD( /0) and so it cannot be applied.
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In order to accommodate disjunctive reasoning in an extension of the default calcu-
lus DC, we generalize two rules. First, we allow for disjunctive detachment via the rule:

(
∨n

i=1 ϕi)
i,〈(ϕi,ψi)〉n

i=1 ⇒ (
∨n

i=1 ψi)
o DisDet

For instance, in the introductory example of this section we can generate (p ∨
q)i,(p,u),(q,u)⇒ uo. We note that FDet is a special instance of DisDet for which n = 1.

We also adjust the rule Def managing argumentative defeat to be the following:

(
∨n

i=1 ϕi)
i,〈(ϕi,ψi)〉n

i=2,¬ψo
1 ⇒¬(ϕ1,ψ1)

DisDef

The rule expresses that a set of defaults Ξ should not be jointly applied if for one of its
members δ ∈ Ξ we have ¬head(δ ).
Definition 9 (Disjunctive Default Calculus (DDC)). The calculus DDC is defined by the
rules Ax,TP,SDet,Cut,DisDet,DisDef.

Example 10 (Ex. 9 cont.). We model our previous example with DDC. Fig. 3 depicts
some arguments and attack relations between them. Let us demonstrate a derivation:

DisDet
wi,(w,¬o)⇒¬oo

DisDet
wi,(w,h∨ r)⇒ (h∨ r)o

DisDef
(h∨ r)i,(r,¬o),¬oo ⇒¬(h,o)

SDet
(h∨ r)o,(r,¬o),¬oo ⇒¬(h,o)

Cut
wi,(w,h∨ r),(r,¬o),¬oo ⇒¬(h,o)

Cut
wi,(w,h∨ r),(w,¬o),(r,¬o)⇒¬(h,o)

There is one stable extension {a1,a2,a3,b1} and, e.g., AF (∨K) |∼s
stable po.

DDC and stable semantics adequately represent disjunctive Default Logic (Prop. 2
is an immediate consequence of Prop. 3 and 4 in the Appendix.):

Proposition 2. Let AF (K) be the argumentation framework induced by DDC.
(1) For every stable extension A of AF there is a disjunctive default extension E

of K for which E = {ϕ | there is Δ ⇒ ϕo ∈ A }.
(2) For every disjunctive default extension E of K there is a stable extension A of

AF for which E = {ϕ | there is Δ ⇒ ϕo ∈ A }.

Let |∼c,∨ [|∼s,∨] be the credulous [skeptical] consequence relation induced by disjunctive
Default Logic (analogous to Def. 3). Let |∼c,∨

stable [|∼s,∨
stable] be the credulous [skeptical]

consequence relation induced by stable semantics and DDC (analogous to Def. 6).

Corollary 2. K |∼s,∨ ϕ iff AF (K) |∼s,∨
stable ϕo and K |∼c,∨ ϕ iff AF (K) |∼c,∨

stable ϕo.

6. Related and Future Work

There are several argumentative [1,10,11] and proof-theoretic accounts [12] of Default
Logic. Our approach is different due to its focus on proof-theoretic modularity and uni-
fication. Our approach, based on a characterization of Input/Output logic in [6], adopts
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a1 : wi,(w,¬o)⇒¬oo b1 :
[

wi,(w,¬o)
(w,h∨ r),(r,¬o)

]
⇒¬(h,o) a4 :

[
wi,(w,h∨ r)
(r, p),(h,o)

]
⇒ (p∨o)o

a2 :
[

wi,(w,h∨ r)
(h, p),(r, p)

]
⇒ po a3 : wi,(w,h∨ r)⇒ (h∨ r)o

Figure 3. Partial Argumentation Framework induced by ∨DC-arguments for ∨K′ of Ex. 10.

modifications to the defeat rule in [6] to represent Default Logic. To obtain a disjunc-
tive variant of Default Logic, a generalization of the detachment and defeat rules suf-
ficed. Our approach improves our understanding of the differences between paradigmatic
methods in default reasoning, identifying exactly in which inference rules they differ.

While [12] handles inconsistency within the calculus, we outsource this to argumen-
tation theory. The upshot is our focus on a transparent representation of the rationale
underlying argumentative defeat: an argument Γ ⇒¬(α,β ) provides reasons in view of
which a default (α,β ) should not be applied. Explicit reasons can be used for explana-
tions (see [6]) and for integrating defeasible reasoning within the calculus (see [13]).

Reasoning disjunctively with defaults is still an open problem. We remind the reader
of Remark 1 for a cautious note on disjunctive reasoning in Input/Output logic. Based
on Reiter’s approach, [14] provide an account which is highly syntax-dependent and is
based on a specific way of building extensions. In contrast, our approach roots disjunc-
tive reasoning in sequent-based inference rules. In this way we allow for the future ex-
ploration of variations of disjunctive reasoning. Additionally, we aim to obtain default
calculi without the rule TP (i.e., identity) to capture deontic default reasoning. We ad-
ditionally plan to include reasoning with priorities [11,15], specificity [16] and apply
methods of causal reasoning [17], as well as the integration of different base logics [13].

In sum, this paper provides a unificatory framework for Default Logic in logical
argumentation. The upshot of our approach is (i) the use of proof-calculi, (ii) defaults as
explicit objects of reasoning, (iii) its uniformity and modularity, making the formalism
promising for extensions of default reasoning, such as disjunctive and deontic reasoning.
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A. Appendix: Meta-Theory

In the context of the following lemmas we suppose an arbitrary knowledge base K =
〈F ,D〉, � to denote the derivability relation of DDC, and �CL to denote the derivability
relation of classical logic (the subscript is omitted where the context disambiguates). We
will use Θ,Ξ and Ω as placeholders for sets of defaults and δ as a placeholder for defaults
in D . For reasons of space some proofs will be only sketched or omitted.

Lemma 1. 1. If � Γi,Δo,Θn ⇒ ϕ i then Δ∪Θ = /0.
2. � Γ′i,Δ′o,Θ′⇒¬head(δ )o for some Θ′ ⊆ Θ,Γ′ ⊆ Γ,Δ′ ⊆ Δ, if � Γi,Δo,Θ ⇒¬δ .
3. Let � Γi,Δo,Ξ⇒¬δ2 and δ1 ∈Ξ. Then there are x∈ {o, i}, Ω⊆Ξ∪{δ2}, Γ′ ⊆ Γ,

Δ′ ⊆ Δ, and Ξ′ ⊆ Ξ for which δ1 ∈ Ω and � Γ′i,Δ′o,Ξ′ \Ω ⇒ (
∨

δ∈Ω body(δ ))x.
4. Let � Γi,Δo,Ξ ⇒ ψo or � Γi,Δo,Ξ ⇒, and δ1 ∈ Ξ. Then there are x ∈ {o, i}, Ω ⊆

Ξ, Γ′ ⊆ Γ, Δ′ ⊆ Δ, Ξ′ ⊆ Ξ s.t. δ1 ∈ Ω and � Γ′i,Δ′o,Ξ′ \Ω ⇒ (
∨

δ∈Ω body(δ ))x.

Proof. Each proof is by induction on the length of the proof of the resp. sequents.

Lemma 2. 1. Let σ be a ∨-process for K such that ϕ ∈ DetD(σ). Then � Γi,Θ ⇒
ϕo for some Θ ⊆⋃

σ and Γ ⊆ F . If F � ϕ , � Γi ⇒ ϕ i for some Γ ⊆ F .
2. If � Γi,Δo,Θ ⇒ ϕo, t.i. a ∨-process σ with ϕ ∈ DetDΓ∪Δ(σ) and

⋃
σ = Θ.

Proof. The proof is by induction on the length of σ resp. the proof of Γi,Δo,Θ⇒ϕo.

Lemma 3. Let A be a stable ext. of AF (K). Then, A = Arg(F ∪⋃
a∈A defaults(a)).

Proof. Let P =
⋃

a∈A defaults(a). Assume that a ∈ Arg(F ∪P)\A . Thus, there is a
b ∈ A that attacks a. So, Con(b) = ¬δ for some δ ∈ defaults(a). So, δ ∈ P and there
is a c ∈ A for which δ ∈ defaults(c). But since b also attacks c this is a contradiction to
the conflict-freeness of A . So, Arg(F ∪P)⊆ A . The other direction is trivial.

Proposition 3. Let K = 〈F ,D〉, A be a stable extension of A F (K) and A o = {a ∈
A | Con(a) ∈ L o}. There is a proper ∨-process for K for which Con[A o] = DetD(σ).

Proof. Let P = defaults[A o] and let A o
� = {a ∈ A o | Con(a) =�o}. Since D is finite,

A o
� is finite. Let A o

� = {a1, . . . ,am}. Also, defaults[A o] = defaults[A o
�] since, in view

of Lem. 3, Γi,Θ ⇒ ϕo ∈ A o implies that Γi,Θ ⇒ �o ∈ A o
�. By Lem. 2.2, for each ai

there is a ∨-process σi = 〈Ξi
j〉gi

j=1 with
⋃

σi = defaults(ai). Let σ i = 〈Ξ j
i 〉m

j=1 for each
1 ≤ i ≤ max({gi | 1 ≤ i ≤ m}), where we set Ξi

k = /0 if k > gi. We let σ = σ1 ◦ . . . ◦
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σmax({gi|1≤i≤m}). Since every σ j is a ∨-process, it is easy to see that so is σ . Note that by
the construction

⋃
σ = P . We now show that σ is a proper ∨-process.

For consistency assume towards a contradiction that ⊥ ∈ DetD(σ). By Lem. 2.1,
there is an a ∈ Arg(K) with defaults(a) ⊆ P and Con(a) = ⊥o. By Lem. 3, a ∈ A .
By Lem. 2.2, there is a process σ ′ = 〈Ωi〉m

i=1 for which defaults(a) =
⋃m

i=1 Ωi and ⊥ ∈
DetD(σ ′). So, Ω1 is such that F � ∨

δ∈Ω1
body(δ ). So, there is an argument b = Γi ⇒

(
∨

δ∈Ω1
body(δ ))i ∈ A . Let δ ∈ Ω1 arbitrary. By Ax and Lem. 3, � ⊥o ⇒¬head(δ )o.

We apply Cut to a, to derive a′ = facts(a),defaults(a)⇒¬head(δ )o. By Lem. 3, a′ ∈A .
By DisDef, � (

∨
δ∈Ω1

body(δ ))i,Ω1 \ δ ,¬head(δ )o ⇒ ¬δ . By Cut with b and a′ we
obtain c = facts(a),Γi,defaults(a),Ω1 \ δ ⇒ ¬δ . By Lem. 3, c ∈ A . Since c attacks a
this is in contradiction to the conflict-freeness of A .

We now show that σ is proper. Let for this Ξ ∈ trig(σ) such that Ξ \⋃
σ 
= /0.

By Lem. 2.1, � Γi,Θ ⇒ (
∨

δ∈Ξ body(δ ))x for some Θ ⊆ P , Γ ⊆ F and x ∈ {i,o}. By
DisDet and DDet, � (

∨
δ∈Ξ body(δ ))i,Ξ ⇒ (

∨
δ∈Ξ head(δ ))y for y ∈ {o, i}. By Cut, we

derive a = Γi,Θ,Ξ ⇒ (
∨

δ∈Ξ head(δ ))o. Note that a /∈ A . By the stability of A , there is
a b ∈ A that attacks a. So, Con(b) = ¬δ for δ ∈ defaults(a). By the conflict-freeness of
A , δ ∈ Ξ\⋃σ . By Lem. 1.2 and 3, there is a c ∈ A with Con(c) = ¬head(δ )o. In view
of Lem. 2.2, ¬head(δ ) ∈ DetD(σ).

Let now δ ∈D with ¬head(δ )∈DetD(σ). Assume δ ∈P . So, there is an argument
b = Γi,Ξ ⇒�o ∈ A with δ ∈ Ξ. Using the fact that ¬head(δ ) ∈ DetD(σ) and Lem. 2
we construct an attacker of b in A , in contradiction to the conflict-freeness of A .

The fact that Con[A o] = DetD(σ) follows directly in view of Lem. 2.

Proposition 4. Let σ be a proper ∨-process for K = 〈F ,D〉 and let Ω = {δ ∈ D |
¬head(δ ) ∈ DetD(σ)}. Then A = Arg(F ∪ (D \Ω)) is a stable set in AF (K) for
which Con[A o] = DetD(σ), where A o = {a ∈ A | Con(a) ∈ L o}.

Proof. We omit the proof of conflict-freeness. For stability consider an a ∈ Arg(K)\A .
WLOG, we assume that defaults(a) is ⊂-minimal with the property of being in Arg(K)\
A . So, there is a δ ∈ defaults(a)∩Ω. We show the case in which a has a conclusion of the
form ¬δ2. By Lem. 1.3, there are Ω′ ⊆ defaults(a)∪{δ2}, Γi ⊆ facts(a), Ξ⊆ defaults(a)
for which δ ∈ Ω′ and � b with b = Γi,Ξ \Ω′ ⇒ (

∨
δ ′∈Ω′ body(δ ′))x for x ∈ {i,o}. By

the minimality of a, b ∈ A . Since δ ∈ Ω, ¬head(δ ) ∈ DetD(σ). By Lem. 2.1 and since⋃
σ ⊆ (D \Ω), there is a c ∈ A with Con(c) = ¬head(δ )o. By DisDef and DDet, �

(
∨

δ ′∈Ω′ body(δ ′))y,¬head(δ )o,Ω′ \ {δ} ⇒ ¬δ for y ∈ {o, i}. By applying Cuts with b
and c we obtain d ∈ A with Con(d) = ¬δ which attacks a.

We now show that A o = {a ∈ A | Con(a) ∈ L o}. Let ϕ ∈ DetD(σ). We note that⋃
σ ⊆ D \Ω. By Lem. 2.1 there is a a ∈ A with Con(a) = ϕo. The other direction is

also shown with the help of Lem. 2.

Prop. 2 follows from Prop. 3 and 4. Prop. 1 relies on proofs analogous to those of
Prop. 3 and 4 for DC and non-disjunctive Default Logic. Cor. 1 and 2 are represented in
Cor. 3, where items (iii) and (iv) follow from Prop. 3 and 4. Items (i) and (ii) again rely
on analogous versions of Prop. 3 and 4 for DC and non-disjunctive Default Logic.

Corollary 3. Let K be a knowledge base. Then,

(i) K |∼s ϕ iff AF (K) |∼s
stable ϕo; (ii) K |∼c ϕ iff AF (K) |∼c

stable ϕo.
(iii) K |∼s,∨ ϕ iff AF (K) |∼s,∨

stable ϕo; (iv) K |∼c,∨ ϕ iff AF (K) |∼c,∨
stable ϕo.
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