Using Computational Learning Strategies as a Tool for Combinatorial Optimization
Abstract. In this paper we describe how a basic strategy from computational learning theory can be used to attack a class of NP-hard combinatorial optimization problems. It turns out that the learning strategy can be used as an iterative booster: given a solution to the combinatorial problem, we will start an efficient simulation of a learning algorithm which has a "good chance" to output an improved solution. This boosting technique is a new and surprisingly simple application of an existing learning strategy. It yields a novel heuristic approach to attack NP-hard optimization problems. It does not apply to each combinatorial problem, but we are able to exactly formalize some sufficient conditions. The new technique applies, for instance, to the problems of minimizing a deterministic finite automaton relative to a given domain, the analogous problem for ordered binary decision diagrams, and to graph coloring.