Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

pix
 
Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix
 
pix Lehrstuhl Mathematik & Informatik
On the Sample Complexity of Learning for Networks of Spiking Neurons with Nonlinear Synaptic Interactions
 
 
 
Unser Angebot: Mitarbeiter | Forschung | Lehre   
pix
Startseite » Mitarbeiter » M. Schmitt » On the Sample Complexity of Learning for Networks of Spiking Neurons with Nonlinear Synaptic Interactions

pix pix On the Sample Complexity of Learning for Networks of Spiking Neurons with Nonlinear Synaptic Interactions

We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudo-dimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types: Constant depth networks are shown to have an almost linear pseudo-dimension, whereas the pseudo-dimension of general networks is quadratic.

Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.

 
 
Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.05.2004 | Ansprechpartner: Webmaster