Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

pix
 
Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix
 
pix Lehrstuhl Mathematik & Informatik
Product Unit Neural Networks with Constant Depth and Superlinear VC Dimension
 
 
 
Unser Angebot: Mitarbeiter | Forschung | Lehre   
pix
Startseite » Mitarbeiter » M. Schmitt » Product Unit Neural Networks with Constant Depth and Superlinear VC Dimension

pix pix Product Unit Neural Networks with Constant Depth and Superlinear VC Dimension

It has remained an open question whether there exist product unit networks with constant depth that have superlinear VC dimension. In this paper we give an answer by constructing two-hidden-layer networks with this property. We further show that the pseudo dimension of a single product unit is linear. These results bear witness to the cooperative effects on the computational capabilities of product unit networks as they are used in practice.

 
 
Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.02.2003 | Ansprechpartner: Webmaster