Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

pix
 
Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix
 
pix Lehrstuhl Mathematik & Informatik
RBF Neural Networks and Descartes' Rule of Signs
 
 
 
Unser Angebot: Mitarbeiter | Forschung | Lehre   
pix
Startseite » Mitarbeiter » M. Schmitt » RBF Neural Networks and Descartes' Rule of Signs

pix pix RBF Neural Networks and Descartes' Rule of Signs

We establish versions of Descartes' rule of signs for radial basis function (RBF) neural networks. These RBF rules of signs provide tight bounds for the number of zeros of univariate networks with certain parameter restrictions. Moreover, they can be used to derive tight bounds for the Vapnik-Chervonenkis (VC) dimension and pseudo-dimension of these networks. In particular, we show that these dimensions are no more than linear. This result contrasts with previous work showing that RBF neural networks with two and more input nodes have superlinear VC dimension. The rules give rise also to lower bounds for network sizes, thus demonstrating the relevance of network parameters for the complexity of computing with RBF neural networks.

 
 
Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.02.2003 | Ansprechpartner: Webmaster