Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

pix
 
Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix
 
pix Lehrstuhl Mathematik & Informatik
Complexity of Learning for Networks of Spiking Neurons with Nonlinear Synaptic Interactions
 
 
 
Unser Angebot: Mitarbeiter | Forschung | Lehre   
pix
Startseite » Mitarbeiter » M. Schmitt » Complexity of Learning for Networks of Spiking Neurons with Nonlinear Synaptic Interactions

pix pix Complexity of Learning for Networks of Spiking Neurons with Nonlinear Synaptic Interactions

We study model networks of spiking neurons where synaptic inputs interact in terms of nonlinear functions. These nonlinearities are used to represent the spatial grouping of synapses on the dendrites and to model the computations performed at local branches. We analyze the complexity of learning in these networks in terms of the VC dimension and the pseudo dimension. Polynomial upper bounds on these dimensions are derived for various types of synaptic nonlinearities.

 
 
Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.02.2003 | Ansprechpartner: Webmaster