Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

pix
 
Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix
 
pix Lehrstuhl Mathematik & Informatik
Learning Temporally Encoded Patterns in Networks of Spiking Neurons
 
 
 
Unser Angebot: Mitarbeiter | Forschung | Lehre   
pix
Startseite » Mitarbeiter » M. Schmitt » Learning Temporally Encoded Patterns in Networks of Spiking Neurons

pix pix Learning Temporally Encoded Patterns in Networks of Spiking Neurons
Networks of spiking neurons are very powerful and versatile models for biological and artificial information processing systems. Especially for modelling pattern analysis tasks in a biologically plausible way that require short response times with high precision they seem to be more appropriate than networks of threshold gates or models that encode analog values in average firing rates. We investigate the question how neurons can learn on the basis of time differences between firing times. In particular, we provide learning rules of the Hebbian type in terms of single spiking events of the pre- and postsynaptic neuron and show that the weights approach some value given by the difference between pre- and postsynaptic firing times with arbitrary high precision.

 
 
Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.02.2003 | Ansprechpartner: Webmaster