Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

pix
 
Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix
 
pix Lehrstuhl Mathematik & Informatik
Hebbian Learning in Networks of Spiking Neurons Using Temporal Coding
 
 
 
Unser Angebot: Mitarbeiter | Forschung | Lehre   
pix
Startseite » Mitarbeiter » M. Schmitt » Hebbian Learning in Networks of Spiking Neurons Using Temporal Coding

pix pix Hebbian Learning in Networks of Spiking Neurons Using Temporal Coding
Computational tasks in biological systems that require short response times can be implemented in a straightforward way by networks of spiking neurons that encode analogue values in temporal coding. We investigate the question how spiking neurons can learn on the basis of differences between firing times. In particular, we provide learning rules of the Hebbian type in terms of single spiking events of the pre- and postsynaptic neuron and show that the weights approach some value given by the difference between pre- and postsynaptic firing times with arbitrary high precision. Our learning rules give rise to a straightforward possibility for realizing very fast pattern analysis tasks with spiking neurons.

 
 
Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.02.2003 | Ansprechpartner: Webmaster