Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

pix
 
Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix
 
pix Lehrstuhl Mathematik & Informatik
Lower Bounds on the Complexity of Approximating Continuous Functions by Sigmoidal Neural Networks
 
 
 
Unser Angebot: Mitarbeiter | Forschung | Lehre   
pix
Startseite » Mitarbeiter » M. Schmitt » Lower Bounds on the Complexity of Approximating Continuous Functions by Sigmoidal Neural Networks

pix pix Lower Bounds on the Complexity of Approximating Continuous Functions by Sigmoidal Neural Networks
We calculate lower bounds on the size of sigmoidal neural networks that approximate continuous functions. In particular, we show that for the approximation of polynomials the network size has to grow as $\Omega((\log k)^{1/4})$ where $k$ is the degree of the polynomials. This bound is valid for any input dimension, i.e. independently of the number of variables. The result is obtained by introducing a new method employing upper bounds on the Vapnik-Chervonenkis dimension for proving lower bounds on the size of networks that approximate continuous functions.

 
 
Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.02.2003 | Ansprechpartner: Webmaster