9. Aufgabenblatt zur Linearen Algebra und Geometrie I

Abgabe bis 11. Januar 2007, 14 Uhr

1. Aufgabe (6 Punkte):

Betrachten Sie das folgende Gleichungssystem im \mathbb{R}^4 :

$$2x_1 - x_2 + x_3 + 3x_4 = 0$$

$$-x_1 - x_2 + x_3 - 2x_4 = 0.$$

Zeigen Sie, dass die Lösungsmenge V ein Unterraum des \mathbb{R}^4 ist, und bestimmen Sie eine Basis von V.

2. Aufgabe (7 Punkte):

Bestimmen Sie den Rang der Matrizen (mit Einträgen in \mathbb{R})

$$\begin{pmatrix} 1 & 1 & 3 & -1 \\ 1 & 0 & -2 & -2 \\ 1 & 2 & 8 & a^2 - 2a \\ -2 & -1 & a - 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & a & a^2 \\ a & 1 & a \\ a^2 & a & 1 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$$

jeweils in Abhängigkeit der angegebenen reellen Parameter.

3. Aufgabe (7 Punkte):

Es seien

$$A = \begin{pmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \\ 3 & -2 & 2 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{und} \quad c = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}.$$

Bestimmen Sie eine Basis des von den Zeilen von A aufgespannten Vektorraums. Betrachten Sie den Unterraum $L_{\text{hom}} = \{x \in \mathbb{R}^4 : Ax = 0\}$. Bestimmen sie eine Basis von L_{hom} . Untersuchen Sie, ob die Gleichungssysteme Ax = b und Ax = c lösbar sind. Bestimmen Sie gegebenfalls ihre Lösungsmengen in der Form $x_{\text{part}} + L_{\text{hom}}$, wobei x_{part} eine partikuläre Lösung ist.

4. Aufgabe (Präsenz):

Es sei (G, \cdot) eine Gruppe und $g \in G$ ein festes Element. Prüfen Sie, ob folgende Abbildungen Homomorphismen von Gruppen sind und bestimmen Sie gegebenenfalls den $Kern \{g \in G \mid f(g) = 1\}$, wenn 1 das neurale Element der Gruppe bezeichnet.

- (a) $f: G \to G, x \mapsto g \cdot x$.
- (b) $f: G \to G, x \mapsto axa^{-1}$.
- (c) $f: G \to G, x \mapsto x^2$.

5. Aufgabe (Präsenz):

Welche der folgenden Abbildungen von Vektorräumen V über dem Körper K sind linear? Gegebenenfalls bestimmen Sie den Kern $\{v \in V \mid \varphi(v) = 0\}$.

(a) $\varphi: K^n \to K^n$, $v \mapsto v + v_0$ für einen festen Vektor $v_0 \in K^n$.

(b) $\varphi : \mathbb{R}^3 \to \mathbb{R}, v \mapsto 2v_1 + 3v_3$, wobei $v = (v_1, v_2, v_3)$.

(c) $\varphi : \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto (\sum_{i=1}^n x_i \, a_i) \cdot a$, für festes $a \in \mathbb{R}^n$.

6. Aufgabe (Präsenz):

Es sei K ein Körper und $\varphi: K^n \to K$ eine lineare Abbildung. Zeigen Sie, dass es Skalare $a_1, a_2, \ldots, a_n \in K$ gibt, so dass für alle $x = (x_1, \ldots, x_n) \in K^n$ gilt:

$$\varphi(x) = \sum_{\nu=1}^{n} a_{\nu} x_{\nu}.$$

 $Das\ LA\mbox{-}Team\ w\"{u}nscht\ Ihnen\ frohe\ Weihnachten\ und\ ein\ gutes\ und\ gesundes\ neues\ Jahr\ 2007\ !$