
Introduction to the Linux Operating System

Forschung und Wissenschaftliche Informationsversorgung
IT.SERVICES

Why Linux?

Why Linux?

GNU/Linux has several advantages over other systems:
• Reliable ⇒ International space station is running Linux

• Flexible ⇒ Used from smart fridges to gaming consoles
• Scalable ⇒ Used on laptops and HPC-Clusters
• GPL-licenced ⇒ Open source and free to use
• Easy to use ⇒ Stay tuned

Why Linux?

Why Linux?

GNU/Linux has several advantages over other systems:
• Reliable ⇒ International space station is running Linux
• Flexible ⇒ Used from smart fridges to gaming consoles

• Scalable ⇒ Used on laptops and HPC-Clusters
• GPL-licenced ⇒ Open source and free to use
• Easy to use ⇒ Stay tuned

Why Linux?

Why Linux?

GNU/Linux has several advantages over other systems:
• Reliable ⇒ International space station is running Linux
• Flexible ⇒ Used from smart fridges to gaming consoles
• Scalable ⇒ Used on laptops and HPC-Clusters

• GPL-licenced ⇒ Open source and free to use
• Easy to use ⇒ Stay tuned

Why Linux?

Why Linux?

GNU/Linux has several advantages over other systems:
• Reliable ⇒ International space station is running Linux
• Flexible ⇒ Used from smart fridges to gaming consoles
• Scalable ⇒ Used on laptops and HPC-Clusters
• GPL-licenced ⇒ Open source and free to use

• Easy to use ⇒ Stay tuned

Why Linux?

Why Linux?

GNU/Linux has several advantages over other systems:
• Reliable ⇒ International space station is running Linux
• Flexible ⇒ Used from smart fridges to gaming consoles
• Scalable ⇒ Used on laptops and HPC-Clusters
• GPL-licenced ⇒ Open source and free to use
• Easy to use ⇒ Stay tuned

Why Linux?

Linux: the HPC Operating System of Choice

TOP-5001 fastest super computers operating systems over the years:

1
https://commons.wikimedia.org/wiki/File:Operating_systems_used_on_top_500_supercomputers.svg

Why Linux?Linux: the HPC Operating System of Choice

https://commons.wikimedia.org/wiki/File:Operating_systems_used_on_top_500_supercomputers.svg

Why Linux?

There is no way to use modern high performance computing
resources without basic Linux knowledge!

Linux: the HPC Operating System of ChoiceWhy Linux?

Directory Structure

Why Linux?

Linux Directory Structure

/ • Linux organizes directories and files in a
hierarchical tree structure.

• Directories can contain more directories.
• The home directory contains one

directory for every user.
• It contains the user owned directories

and files.
• The location of a file/directory can be

written as a path through the tree:
/home/alice/projects/ToDo.txt
short: ˜/projects/ToDo.txt

• Note: Linux→/, Windows→\

Linux Directory Structure

Linux Directory Structure

/

home/

bin/

etc/

lib/

...

• Linux organizes directories and files in a
hierarchical tree structure.

• Directories can contain more directories.

• The home directory contains one
directory for every user.

• It contains the user owned directories
and files.

• The location of a file/directory can be
written as a path through the tree:
/home/alice/projects/ToDo.txt
short: ˜/projects/ToDo.txt

• Note: Linux→/, Windows→\

Linux Directory Structure

Linux Directory Structure

/

home/

alice/

bob/

carol/

......

• Linux organizes directories and files in a
hierarchical tree structure.

• Directories can contain more directories.
• The home directory contains one

directory for every user.

• It contains the user owned directories
and files.

• The location of a file/directory can be
written as a path through the tree:
/home/alice/projects/ToDo.txt
short: ˜/projects/ToDo.txt

• Note: Linux→/, Windows→\

Linux Directory Structure

Linux Directory Structure

/

home/

alice/

projects/

Desktop/

Documents/

...
...

...

• Linux organizes directories and files in a
hierarchical tree structure.

• Directories can contain more directories.
• The home directory contains one

directory for every user.
• It contains the user owned directories

and files.

• The location of a file/directory can be
written as a path through the tree:
/home/alice/projects/ToDo.txt
short: ˜/projects/ToDo.txt

• Note: Linux→/, Windows→\

Linux Directory Structure

Linux Directory Structure

/

home/

alice/

projects/

ToDo.txt

...
...

...

• Linux organizes directories and files in a
hierarchical tree structure.

• Directories can contain more directories.
• The home directory contains one

directory for every user.
• It contains the user owned directories

and files.
• The location of a file/directory can be

written as a path through the tree:
/home/alice/projects/ToDo.txt
short: ˜/projects/ToDo.txt

• Note: Linux→/, Windows→\

Linux Directory Structure

Linux Directory Structure

/

home/

alice/

projects/

ToDo.txt

...
...

...

• Linux organizes directories and files in a
hierarchical tree structure.

• Directories can contain more directories.
• The home directory contains one

directory for every user.
• It contains the user owned directories

and files.
• The location of a file/directory can be

written as a path through the tree:
/home/alice/projects/ToDo.txt
short: ˜/projects/ToDo.txt

• Note: Linux→/, Windows→\

Linux Directory Structure

The Terminal

Linux Directory Structure

The Terminal

Terminal

alice@hpc:$ hostname
hpc

alice@hpc:$ v

• A terminal is a command line tool

• Users type a command
• Upon pressing Enter the OS executes the command
• The result is printed to the terminal
• The terminal is ready for the next command
• The −−→−−→ key can be used to autocomplete commands

The Terminal

The Terminal

Terminal

alice@hpc:$ hostname
hpc

alice@hpc:$ hostnamev

• A terminal is a command line tool
• Users type a command

• Upon pressing Enter the OS executes the command
• The result is printed to the terminal
• The terminal is ready for the next command
• The −−→−−→ key can be used to autocomplete commands

The Terminal

The Terminal

Terminal
alice@hpc:$ hostname
hpc
alice@hpc:$ v

• A terminal is a command line tool
• Users type a command
• Upon pressing Enter the OS executes the command
• The result is printed to the terminal
• The terminal is ready for the next command

• The −−→−−→ key can be used to autocomplete commands

The Terminal

The Terminal

Terminal
alice@hpc:$ hostname
hpc
alice@hpc:$ v

• A terminal is a command line tool
• Users type a command
• Upon pressing Enter the OS executes the command
• The result is printed to the terminal
• The terminal is ready for the next command
• The −−→−−→ key can be used to autocomplete commands

The Terminal

Navigating the Directory
Structure

The Terminal

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

To navigate the directory tree in a terminal
programs are executed.

Terminal
alice@hpc:$

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

Which folder am I currently in?
pwd (print working directory).

Terminal
alice@hpc:$ pwd
/home/alice

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

What is contained in the folder?
ls (list contents of current directory).

Terminal
alice@hpc:$ ls
Documents projects

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

Some programs take arguments.
ls Documents
(list contents of “Documents”).

Terminal
alice@hpc:$ ls Documents
CV.tex test.txt

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

Tune program behavior with flags.
ls -l (list long-format) lists files and
directories with extra information.

Terminal
alice@hpc:$ ls -l
total 8
drwxrwxr-x 2 alice alice 4096 Feb 28 10:49 Documents
drwxrwxr-x 2 alice alice 4096 Feb 28 11:12 projects

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

ls -lt or ls -l -t (list long-format
time-sorted) sorts the list by time stamp.

Terminal
alice@hpc:$ ls -lt
total 8
drwxrwxr-x 2 alice alice 4096 Feb 28 11:12 projects
drwxrwxr-x 2 alice alice 4096 Feb 28 10:49 Documents

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

Many programs have a special --help flag to
show how to use it.
ls --help (shows help information for the ls
program)

Terminal
alice@hpc:$ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current
directory by default).
...

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

How to change the current directory?

Terminal
alice@hpc:$ pwd
/home/alice/

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

cd Documents (change directory) will change
the current directory to “Documents” (if it
exists).

Terminal
alice@hpc:$ cd Documents
alice@hpc:$ pwd
/home/alice/Documents

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

cd .. will leave the folder and go to the next
higher level.

Terminal
alice@hpc:$ cd ..
alice@hpc:$ pwd
/home/alice

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

cd /home/alice/projects/ will go to that
folder (absolute paths start with /).

Terminal
alice@hpc:$ cd /home/alice/projects/
alice@hpc:$ pwd
/home/alice/projects

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

cd ../Documents/ will go one level up then
into “Documents” (relative paths do not start
with /)

Terminal
alice@hpc:$ cd ../Documents
alice@hpc:$ pwd
/home/alice/Documents

Navigating the Directory Structure

Navigating the Directory Structure

/home/alice/

Documents/

test.txt

CV.tex

projects/

todo.txt

cd ˜ will go to /home/alice or whatever your
home directory is.

Terminal
alice@hpc:$ cd ˜
alice@hpc:$ pwd
/home/alice

Navigating the Directory Structure

Modifying the Directory
Structure

Navigating the Directory Structure

Modifying the Directory Structure

/home/alice/

Documents/

projects/

mkdir inputs (make directory) creates a
directory with name “input”.

Terminal
alice@hpc:$ ls
Documents projects

Warning!

Linux deletes files/directories without asking for confirmation.
It assumes you know what you are doing.

Modifying the Directory Structure

Modifying the Directory Structure

/home/alice/

Documents/

projects/

inputs/

mkdir inputs (make directory) creates a
directory with name “input”.

Terminal
alice@hpc:$ mkdir inputs

Warning!

Linux deletes files/directories without asking for confirmation.
It assumes you know what you are doing.

Modifying the Directory Structure

Modifying the Directory Structure

/home/alice/

Documents/

projects/

inputs/

mkdir inputs (make directory) creates a
directory with name “input”.

Terminal
alice@hpc:$ ls
Documents projects inputs

Warning!

Linux deletes files/directories without asking for confirmation.
It assumes you know what you are doing.

Modifying the Directory Structure

Modifying the Directory Structure

/home/alice/

Documents/

projects/

rmdir inputs (remove directory) deletes the
directory input if it is empty.

Terminal
alice@hpc:$ rmdir inputs

Warning!

Linux deletes files/directories without asking for confirmation.
It assumes you know what you are doing.

Modifying the Directory Structure

Modifying the Directory Structure

/home/alice/

Documents/

projects/

rmdir inputs (remove directory) deletes the
directory input if it is empty.

Terminal
alice@hpc:$ ls
Documents projects

Warning!

Linux deletes files/directories without asking for confirmation.
It assumes you know what you are doing.

Modifying the Directory Structure

Modifying the Directory Structure

/home/alice/

Documents/

projects/

rm -r inputs (remove recursively) deletes a
file/directory with name “inputs” and all its
contents.

Terminal
alice@hpc:$ rm -r inputs

Warning!

Linux deletes files/directories without asking for confirmation.
It assumes you know what you are doing.

Modifying the Directory Structure

Exercise 1

1. Open a Terminal
◦ Ctrl + Alt + T
◦ Via the startmenu

2. Check your current location
3. Create a new folder named linuxintro

4. Change into that folder and check your current location

Terminal

alice@hpc:$ pwd
/home/alice
alice@hpc:$ mkdir linuxintro
alice@hpc:$ cd linuxintro
alice@hpc:$ pwd
/home/alice/linuxintro

Modifying the Directory StructureExercise 1

Exercise 1

1. Open a Terminal
◦ Ctrl + Alt + T
◦ Via the startmenu

2. Check your current location
3. Create a new folder named linuxintro

4. Change into that folder and check your current location

Terminal
alice@hpc:$

pwd
/home/alice
alice@hpc:$ mkdir linuxintro
alice@hpc:$ cd linuxintro
alice@hpc:$ pwd
/home/alice/linuxintro

Exercise 1

Exercise 1

1. Open a Terminal
◦ Ctrl + Alt + T
◦ Via the startmenu

2. Check your current location

3. Create a new folder named linuxintro

4. Change into that folder and check your current location

Terminal
alice@hpc:$ pwd
/home/alice
alice@hpc:$

mkdir linuxintro
alice@hpc:$ cd linuxintro
alice@hpc:$ pwd
/home/alice/linuxintro

Exercise 1

Exercise 1

1. Open a Terminal
◦ Ctrl + Alt + T
◦ Via the startmenu

2. Check your current location
3. Create a new folder named linuxintro

4. Change into that folder and check your current location

Terminal
alice@hpc:$ pwd
/home/alice
alice@hpc:$ mkdir linuxintro
alice@hpc:$

cd linuxintro
alice@hpc:$ pwd
/home/alice/linuxintro

Exercise 1

Exercise 1

1. Open a Terminal
◦ Ctrl + Alt + T
◦ Via the startmenu

2. Check your current location
3. Create a new folder named linuxintro

4. Change into that folder and check your current location

Terminal
alice@hpc:$ pwd
/home/alice
alice@hpc:$ mkdir linuxintro
alice@hpc:$ cd linuxintro
alice@hpc:$ pwd
/home/alice/linuxintro

Exercise 1

Handling Files

Exercise 1

Handling Files

/home/alice/

Docs/

back/

test

Terminal
alice@hpc:$ ls Docs
test
alice@hpc:$ ls back

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

tets

cp Docs/test back/tets
(copy Docs/test to back/tets).

Terminal
alice@hpc:$ cp Docs/test back/tets

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

tets

Terminal
alice@hpc:$ ls Docs
test
alice@hpc:$ ls back
tets

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

tets

test

cp Docs/test back/
(copy Docs/test into directory back/).

Terminal
alice@hpc:$ cp Docs/test back/

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

tets

test

Terminal
alice@hpc:$ ls Docs
test
alice@hpc:$ ls back
test tets

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

test

rm back/tets
(remove back/tets).

Terminal
alice@hpc:$ rm back/tets

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

test

Terminal
alice@hpc:$ ls Docs
test
alice@hpc:$ ls back
test

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

test

mv back/test ./test
(move back/test to ./test).

Terminal
alice@hpc:$ mv back/test ./test

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Handling Files

/home/alice/

Docs/

back/

test

test

Terminal
alice@hpc:$ ls Docs
test
alice@hpc:$ ls back
alice@hpc:$ ls
test

Warning!

Linux overwrites/deletes files without asking for confirmation.
It assumes you know what you are doing.

Handling Files

Exercise 2

1. Use the --help flag to learn how to use touch to create a new
empty file

2. Create two new empty files named data.txt and script.sh

Handling FilesExercise 2

Exercise 2

1. Use the --help flag to learn how to use touch to create a new
empty file

Terminal
alice@hpc:$ touch --help
Usage: touch [OPTION]... FILE...
Update the access and modification times of each FILE to the current time.

A FILE argument that does not exist is created empty, unless -c or -h
is supplied.

Exercise 2

Exercise 2

2. Create two new empty files named data.txt and script.sh

Terminal
alice@hpc:$ touch data.txt
alice@hpc:$ touch script.sh
alice@hpc:$ ls
data.txt script.sh

Exercise 2

Permission Denied

Exercise 2

Permission Denied

Terminal
alice@hpc:$ ls /root/
ls: cannot open directory ’/root/’: Permission denied

• Users do not have permission to access every file/directory

Permission Denied

Permission Denied

Terminal
alice@hpc:$ ls -l /
lrwxrwxrwx 1 root root 7 Jan 3 2023 bin -> usr/bin
drwxr-xr-x 3 root root 4096 Jan 3 2023 home
drwx------ 5 root root 4096 Dez 22 14:51 root
-rw-r--r-- 18 root root 96 Jan 30 08:24 afile

• Users do not have permission to access every file/directory

Permission Denied

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links
• Owning user of the file/directory
• Owning group of the file/directory
• Size in bytes
• Date of last modification

• File/Directory name

Permission DeniedReading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory

• Owning group of the file/directory
• Size in bytes
• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory

• Size in bytes
• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)

• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory

• Size in bytes
• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory

• Size in bytes
• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user

◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory

• Size in bytes
• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group

◦ Permissions for everyone else (others)
• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory

• Size in bytes
• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory

• Size in bytes
• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory
• Size in bytes

• Date of last modification

• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links

• Owning user of the file/directory
• Owning group of the file/directory
• Size in bytes
• Date of last modification
• File/Directory name

Reading Permissions

Reading Permissions

-rwxr-xr-x 1 alice phys 4096 Jan 3 2023 my_project

• Type (“d“→directory, “-“→file, “l“→link)
• Permissions (“r“→read, “w“→write, “x“→execute)

◦ Permissions for owning user
◦ Permissions for owning group
◦ Permissions for everyone else (others)

• Number of hard links
• Owning user of the file/directory
• Owning group of the file/directory
• Size in bytes
• Date of last modification
• File/Directory name

Reading Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.

a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project

alice@hpc:$ chmod my_project
alice@hpc:$ ls -l

1 alice phys ... my_project

To change the owner use: chown user:group filename

Reading PermissionsSetting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other

±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project

alice@hpc:$ chmod my_project
alice@hpc:$ ls -l

1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission

b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project

alice@hpc:$ chmod my_project
alice@hpc:$ ls -l

1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project

alice@hpc:$ chmod my_project
alice@hpc:$ ls -l

1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project

alice@hpc:$ chmod my_project
alice@hpc:$ ls -l

1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod u+x my_project

alice@hpc:$ ls -l
1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod u+x my_project
alice@hpc:$ ls -l
-rwx-w-r-- 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod g+r my_project

alice@hpc:$ ls -l
1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod g+r my_project
alice@hpc:$ ls -l
-rw-rw-r-- 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod o+wx my_project

alice@hpc:$ ls -l
1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod o+wx my_project
alice@hpc:$ ls -l
-rw--w-rwx 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod u-w my_project

alice@hpc:$ ls -l
1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod u-w my_project
alice@hpc:$ ls -l
-r---w-r-- 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod g-w my_project

alice@hpc:$ ls -l
1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod g-w my_project
alice@hpc:$ ls -l
-rw----r-- 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod o-r my_project

alice@hpc:$ ls -l
1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod o-r my_project
alice@hpc:$ ls -l
-rw--w---- 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod u+rwx,g+rwx,o-rwx my_project

alice@hpc:$ ls -l
1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod u+rwx,g+rwx,o-rwx my_project
alice@hpc:$ ls -l
-rwxrwx--- 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions

chmod a±b filename alters the permissions of a file/directory.
a: u→user, g→group, o→other
±: +→add permission, −→remove permission
b: r→read, w→write, x→execute

Terminal
alice@hpc:$ ls -l
-rw--w-r-- 1 alice phys ... my_project
alice@hpc:$ chmod u+rwx,g+rwx,o-rwx my_project
alice@hpc:$ ls -l
-rwxrwx--- 1 alice phys ... my_project

To change the owner use: chown user:group filename

Setting Permissions

Setting Permissions (Alternative)

Dec Bin Perm

0 000 ---
1 001 --x
2 010 -w-
3 011 -wx
4 100 r--
5 101 r-x
6 110 rw-
7 111 rwx

Use chmod UGO file to set permissions.
(U→User, G→Group, O→Other)

Terminal
alice@hpc:$ chmod 643 my_project
alice@hpc:$ ls -l
-rw-r---wx- 1 alice phys ... my_project

User 6 = 4 + 2 → rw-

Group 4 → r--

Others 3 = 2 + 1 → -wx

To change the owner use: chown user:group filename

Setting PermissionsSetting Permissions (Alternative)

Exercise 3

1. Change permissions of script.sh such that:
◦ you can read, write, and execute
◦ your group can read, and execute
◦ others can only read

Setting Permissions (Alternative)Exercise 3

Exercise 3

1. Change permissions of script.sh such that:
◦ you can read, write, and execute
◦ your group can read, and execute
◦ others can only read

Terminal
alice@hpc:$ chmod u+x,g+x,g-w script.sh
alice@hpc:$ ls -l
total 0
-rwxr-xr-- 1 alice alicegrp 0 Jun 17 08:12 script.sh

Exercise 3

Editing Files

Exercise 3

Editing Files

• Scripts, configurations, inputs, outputs, logs, ... are usually
textfiles.

• Linux provides terminal based editors for textfiles in a huge variaty.
• Famous are:

◦ emacs (powerful, complex)
◦ vim (powerful, complex)
◦ nano (simple, suitable for beginners)

Terminal
alice@hpc:$

nano oatmeal-raisin-cookies.txt

Editing Files

Editing Files

• Scripts, configurations, inputs, outputs, logs, ... are usually
textfiles.

• Linux provides terminal based editors for textfiles in a huge variaty.

• Famous are:

◦ emacs (powerful, complex)
◦ vim (powerful, complex)
◦ nano (simple, suitable for beginners)

Terminal
alice@hpc:$

nano oatmeal-raisin-cookies.txt

Editing Files

Editing Files

• Scripts, configurations, inputs, outputs, logs, ... are usually
textfiles.

• Linux provides terminal based editors for textfiles in a huge variaty.
• Famous are:

◦ emacs (powerful, complex)

◦ vim (powerful, complex)
◦ nano (simple, suitable for beginners)

Terminal
alice@hpc:$

nano oatmeal-raisin-cookies.txt

Editing Files

Editing Files

• Scripts, configurations, inputs, outputs, logs, ... are usually
textfiles.

• Linux provides terminal based editors for textfiles in a huge variaty.
• Famous are:

◦ emacs (powerful, complex)
◦ vim (powerful, complex)

◦ nano (simple, suitable for beginners)

Terminal
alice@hpc:$

nano oatmeal-raisin-cookies.txt

Editing Files

Editing Files

• Scripts, configurations, inputs, outputs, logs, ... are usually
textfiles.

• Linux provides terminal based editors for textfiles in a huge variaty.
• Famous are:

◦ emacs (powerful, complex)
◦ vim (powerful, complex)
◦ nano (simple, suitable for beginners)

Terminal
alice@hpc:$

nano oatmeal-raisin-cookies.txt

Editing Files

Editing Files

• Scripts, configurations, inputs, outputs, logs, ... are usually
textfiles.

• Linux provides terminal based editors for textfiles in a huge variaty.
• Famous are:

◦ emacs (powerful, complex)
◦ vim (powerful, complex)
◦ nano (simple, suitable for beginners)

Terminal
alice@hpc:$ nano

oatmeal-raisin-cookies.txt

Editing Files

Editing Files

• Scripts, configurations, inputs, outputs, logs, ... are usually
textfiles.

• Linux provides terminal based editors for textfiles in a huge variaty.
• Famous are:

◦ emacs (powerful, complex)
◦ vim (powerful, complex)
◦ nano (simple, suitable for beginners)

Terminal
alice@hpc:$ nano oatmeal-raisin-cookies.txt

Editing Files

The Nano Editor

Nano is an easy to learn and use editor.

Editing FilesThe Nano Editor

The Nano Editor

Textfield: Just start typing.

The Nano Editor

The Nano Editor

Move the cursor with the arrow-keys.

The Nano Editor

The Nano Editor

Commands: Perform actions with shortcuts (ˆ = Ctrl+).

The Nano Editor

Exercise 4

1. Open data.txt with the nano editor
2. Write ten five-digit numbers into your file (One number per line)

The Nano EditorExercise 4

Exercise 4

1. Open data.txt with the nano editor
2. Write ten five-digit numbers into your file (One number per line)

data.txt
34966
85350
62256
62524
82200
59493
97593
92477
40363
93040

Exercise 4

Workflow and Pipelines

Exercise 4

Workflow and Pipelines

• Linux comes with a huge set of small programs.

• Each does only one thing, but it does it well.
• You can take the output of one program and immediately pass it

to the next program as input.
• This is done with the pipe operator “|”.
• This enables the quick construction of flexible processing pipelines:

◦ command1 | command2 | command3

• “>“ Takes the output of a program and puts it into a file

◦ command1 | command2 | command3 > new_file

• “>>“ Takes the output of a program and appends it to a file

◦ command1 | command2 | command3 >> old_file

Workflow and Pipelines

Workflow and Pipelines

• Linux comes with a huge set of small programs.
• Each does only one thing, but it does it well.

• You can take the output of one program and immediately pass it
to the next program as input.

• This is done with the pipe operator “|”.
• This enables the quick construction of flexible processing pipelines:

◦ command1 | command2 | command3

• “>“ Takes the output of a program and puts it into a file

◦ command1 | command2 | command3 > new_file

• “>>“ Takes the output of a program and appends it to a file

◦ command1 | command2 | command3 >> old_file

Workflow and Pipelines

Workflow and Pipelines

• Linux comes with a huge set of small programs.
• Each does only one thing, but it does it well.
• You can take the output of one program and immediately pass it

to the next program as input.

• This is done with the pipe operator “|”.
• This enables the quick construction of flexible processing pipelines:

◦ command1 | command2 | command3

• “>“ Takes the output of a program and puts it into a file

◦ command1 | command2 | command3 > new_file

• “>>“ Takes the output of a program and appends it to a file

◦ command1 | command2 | command3 >> old_file

Workflow and Pipelines

Workflow and Pipelines

• Linux comes with a huge set of small programs.
• Each does only one thing, but it does it well.
• You can take the output of one program and immediately pass it

to the next program as input.
• This is done with the pipe operator “|”.

• This enables the quick construction of flexible processing pipelines:

◦ command1 | command2 | command3

• “>“ Takes the output of a program and puts it into a file

◦ command1 | command2 | command3 > new_file

• “>>“ Takes the output of a program and appends it to a file

◦ command1 | command2 | command3 >> old_file

Workflow and Pipelines

Workflow and Pipelines

• Linux comes with a huge set of small programs.
• Each does only one thing, but it does it well.
• You can take the output of one program and immediately pass it

to the next program as input.
• This is done with the pipe operator “|”.
• This enables the quick construction of flexible processing pipelines:

◦ command1 | command2 | command3

• “>“ Takes the output of a program and puts it into a file
◦ command1 | command2 | command3 > new_file

• “>>“ Takes the output of a program and appends it to a file
◦ command1 | command2 | command3 >> old_file

Workflow and Pipelines

Workflow and Pipelines

• Linux comes with a huge set of small programs.
• Each does only one thing, but it does it well.
• You can take the output of one program and immediately pass it

to the next program as input.
• This is done with the pipe operator “|”.
• This enables the quick construction of flexible processing pipelines:

◦ command1 | command2 | command3
• “>“ Takes the output of a program and puts it into a file

◦ command1 | command2 | command3 > new_file
• “>>“ Takes the output of a program and appends it to a file

◦ command1 | command2 | command3 >> old_file

Workflow and Pipelines

Pipeline Example

• Example Task: How many numbers between 1 and 1,000,000,000
contain the sequence 65537?

Terminal
alice@hpc:$

Workflow and PipelinesPipeline Example

Pipeline Example

• Example Task: How many numbers between 1 and 1,000,000,000
contain the sequence 65537?

• seq 1000000000 creates a sequence of numbers 1 - 1000000000.

Terminal
alice@hpc:$ seq 1000000000
1
2
...
999999999
1000000000

Pipeline Example

Pipeline Example

• Example Task: How many numbers between 1 and 1,000,000,000
contain the sequence 65537?

• grep 65537 extracts all lines that contain “65537”.

Terminal
alice@hpc:$ seq 1000000000 | grep 65537
65537
165537
...
999865537
999965537

grep can use regular expressions (regex)

Pipeline Example

Pipeline Example

• Example Task: How many numbers between 1 and 1,000,000,000
contain the sequence 65537?

• wc -l counts the lines.

Terminal
alice@hpc:$ seq 1000000000 | grep 65537 | wc -l
50000

Pipeline Example

Exercise 5

1. Write the contents of data.txt to the terminal with cat

2. Sort your numbers with the sort command

3. Find the smallest number with head -n 1

4. Pipe the smallest number to a new file limits.txt with >

4. Find the largest number with tail -n 1

4. and append it to limits.txt with >>

Pipeline ExampleExercise 5

Exercise 5

1. Write the contents of data.txt to the terminal with cat

Terminal
alice@hpc:$ cat data.txt
34966
85350
62256
62524
82200
59493
97593
92477
40363
93040

Exercise 5

Exercise 5

2. Sort your numbers with the sort command

Terminal
alice@hpc:$ cat data.txt | sort
34966
40363
59493
62256
62524
82200
85350
92477
93040
97593

Exercise 5

Exercise 5

3. Find the smallest number with head -n 1

Terminal
alice@hpc:$ cat data.txt | sort | head -n 1
34966

Exercise 5

Exercise 5

4. Pipe the smallest number to a new file limits.txt with >

Terminal
alice@hpc:$ cat data.txt | sort | head -n 1 > limits.txt

Exercise 5

Exercise 5

4. Find the largest number with tail -n 1

Terminal
alice@hpc:$ cat data.txt | sort | tail -n 1
93040

Exercise 5

Exercise 5

4. and append it to limits.txt with >>

Terminal
alice@hpc:$ cat data.txt | sort | tail -n 1 >> limits.txt

Exercise 5

Exercise 5

Terminal
alice@hpc:$ cat limits.txt
34966
97593

Exercise 5

Automation and Scripting

Exercise 5

Variables

It is possible to store text snippets in variables for later use.

Terminal
alice@hpc:$ long_text="All your base are belong to us."

alice@hpc:$ echo ${long_text}
All your base are belong to us.
alice@hpc:$ program="echo"
alice@hpc:$ ${program} ${long_text}
All your base are belong to us.
alice@hpc:$ command="${program} ${long_text}"
alice@hpc:$ ${command}
All your base are belong to us.

Variables

Variables

Variables can be accessed with ${variablename}.

Terminal
alice@hpc:$ long_text="All your base are belong to us."
alice@hpc:$ echo ${long_text}
All your base are belong to us.

alice@hpc:$ program="echo"
alice@hpc:$ ${program} ${long_text}
All your base are belong to us.
alice@hpc:$ command="${program} ${long_text}"
alice@hpc:$ ${command}
All your base are belong to us.

Variables

Variables

Commands can also be stored in variables.

Terminal
alice@hpc:$ long_text="All your base are belong to us."
alice@hpc:$ echo ${long_text}
All your base are belong to us.
alice@hpc:$ program="echo"

alice@hpc:$ ${program} ${long_text}
All your base are belong to us.
alice@hpc:$ command="${program} ${long_text}"
alice@hpc:$ ${command}
All your base are belong to us.

Variables

Variables

Commands can also be stored in variables.

Terminal
alice@hpc:$ long_text="All your base are belong to us."
alice@hpc:$ echo ${long_text}
All your base are belong to us.
alice@hpc:$ program="echo"
alice@hpc:$ ${program} ${long_text}
All your base are belong to us.

alice@hpc:$ command="${program} ${long_text}"
alice@hpc:$ ${command}
All your base are belong to us.

Variables

Variables

Variables can again be stored in variables.

Terminal
alice@hpc:$ long_text="All your base are belong to us."
alice@hpc:$ echo ${long_text}
All your base are belong to us.
alice@hpc:$ program="echo"
alice@hpc:$ ${program} ${long_text}
All your base are belong to us.
alice@hpc:$ command="${program} ${long_text}"

alice@hpc:$ ${command}
All your base are belong to us.

Variables

Variables

Variables can again be stored in variables.

Terminal
alice@hpc:$ long_text="All your base are belong to us."
alice@hpc:$ echo ${long_text}
All your base are belong to us.
alice@hpc:$ program="echo"
alice@hpc:$ ${program} ${long_text}
All your base are belong to us.
alice@hpc:$ command="${program} ${long_text}"
alice@hpc:$ ${command}
All your base are belong to us.

Variables

Numerical Variables and Calculations

bc (basic calculator) can be used to handle simple calculations

Terminal
alice@hpc:$ echo "(2*3+11-7)^3/5" | bc
200

alice@hpc:$ echo "(2*3+11-5)/7" | bc
1
alice@hpc:$ echo "(2*3+11-5)/7" | bc -l
1.71428571428571428571
alice@hpc:$ pi=$(echo "22/7" | bc -l)
alice@hpc:$ echo "${pi}*2" | bc -l
6.28571428571428571428

VariablesNumerical Variables and Calculations

Numerical Variables and Calculations

bc (basic calculator) can be used to handle simple calculations

Terminal
alice@hpc:$ echo "(2*3+11-7)^3/5" | bc
200
alice@hpc:$ echo "(2*3+11-5)/7" | bc
1

alice@hpc:$ echo "(2*3+11-5)/7" | bc -l
1.71428571428571428571
alice@hpc:$ pi=$(echo "22/7" | bc -l)
alice@hpc:$ echo "${pi}*2" | bc -l
6.28571428571428571428

Numerical Variables and Calculations

Numerical Variables and Calculations

the -l flag is required for floating point arithmetic

Terminal
alice@hpc:$ echo "(2*3+11-7)^3/5" | bc
200
alice@hpc:$ echo "(2*3+11-5)/7" | bc
1
alice@hpc:$ echo "(2*3+11-5)/7" | bc -l
1.71428571428571428571

alice@hpc:$ pi=$(echo "22/7" | bc -l)
alice@hpc:$ echo "${pi}*2" | bc -l
6.28571428571428571428

Numerical Variables and Calculations

Numerical Variables and Calculations

Results can be stored in variables with $()

, and used again

Terminal
alice@hpc:$ echo "(2*3+11-7)^3/5" | bc
200
alice@hpc:$ echo "(2*3+11-5)/7" | bc
1
alice@hpc:$ echo "(2*3+11-5)/7" | bc -l
1.71428571428571428571
alice@hpc:$ pi=$(echo "22/7" | bc -l)

alice@hpc:$ echo "${pi}*2" | bc -l
6.28571428571428571428

Numerical Variables and Calculations

Numerical Variables and Calculations

Results can be stored in variables with $(), and used again

Terminal
alice@hpc:$ echo "(2*3+11-7)^3/5" | bc
200
alice@hpc:$ echo "(2*3+11-5)/7" | bc
1
alice@hpc:$ echo "(2*3+11-5)/7" | bc -l
1.71428571428571428571
alice@hpc:$ pi=$(echo "22/7" | bc -l)
alice@hpc:$ echo "${pi}*2" | bc -l
6.28571428571428571428

Numerical Variables and Calculations

Writing Scripts

myscript.sh

#!/bin/bash

write a few infos to variables
user=$(whoami)
host=$(hostname)
timestamp=$(date +"%s")
combine into string
string="executed by ${user} on ${host} at ${timestamp}"
echo ${string}

Select bash as language for this script

Numerical Variables and CalculationsWriting Scripts

Writing Scripts

myscript.sh

#!/bin/bash
write a few infos to variables

user=$(whoami)
host=$(hostname)
timestamp=$(date +"%s")
combine into string
string="executed by ${user} on ${host} at ${timestamp}"
echo ${string}

Comments start with "#" and are ignored

Writing Scripts

Writing Scripts

myscript.sh

#!/bin/bash
write a few infos to variables
user=$(whoami)
host=$(hostname)
timestamp=$(date +"%s")

combine into string
string="executed by ${user} on ${host} at ${timestamp}"
echo ${string}

"$()" executes the command inside and assigns it to the variable

Writing Scripts

Writing Scripts

myscript.sh

#!/bin/bash
write a few infos to variables
user=$(whoami)
host=$(hostname)
timestamp=$(date +"%s")
combine into string
string="executed by ${user} on ${host} at ${timestamp}"

echo ${string}

Store a string in a variable

Writing Scripts

Writing Scripts

myscript.sh

#!/bin/bash
write a few infos to variables
user=$(whoami)
host=$(hostname)
timestamp=$(date +"%s")
combine into string
string="executed by ${user} on ${host} at ${timestamp}"
echo ${string}

Output the string to the terminal

Writing Scripts

Running Scripts

Terminal
alice@hpc:$ bash ./myscript.sh

executed by alice on hpc at We 31. Jan 09:51:07 CEST 2024

Run a script by calling the interpreter "bash",
and giving it the script path as argument.

Writing ScriptsRunning Scripts

Running Scripts

Terminal
alice@hpc:$ bash ./myscript.sh
executed by alice on hpc at We 31. Jan 09:51:07 CEST 2024

Run a script by calling the interpreter "bash",
and giving it the script path as argument.

Running Scripts

Running Scripts

Terminal
alice@hpc:$ ls -l ./myscript.sh
-rwxr-xr-- 1 alice phys 575 Jan 31 06:52 myscript.sh

alice@hpc:$./myscript.sh
executed by alice on hpc at We 31. Jan 09:55:07 CEST 2024

If the script is marked executable the interpreter can be omitted.
The interpreter will be taken from the first line of the script.

Running Scripts

Running Scripts

Terminal
alice@hpc:$ ls -l ./myscript.sh
-rwxr-xr-- 1 alice phys 575 Jan 31 06:52 myscript.sh
alice@hpc:$./myscript.sh

executed by alice on hpc at We 31. Jan 09:55:07 CEST 2024

If the script is marked executable the interpreter can be omitted.
The interpreter will be taken from the first line of the script.

Running Scripts

Running Scripts

Terminal
alice@hpc:$ ls -l ./myscript.sh
-rwxr-xr-- 1 alice phys 575 Jan 31 06:52 myscript.sh
alice@hpc:$./myscript.sh
executed by alice on hpc at We 31. Jan 09:55:07 CEST 2024

If the script is marked executable the interpreter can be omitted.
The interpreter will be taken from the first line of the script.

Running Scripts

Exercise 6

1. Write a script that. . .
◦ stores the min and max value from data.txt in variables
◦ computes the sum and difference of the min and max values and

stores them in variables
◦ writes out the values of the sum and difference to the terminal
◦ computes and then writes out one, two, and three times the minimal

value.
2. Run the script.

Running ScriptsExercise 6

Exercise 6

1. Write a script that. . .

myscript.sh

#!/bin/bash

minval=$(cat data.txt | sort | head -n 1)
maxval=$(cat data.txt | sort | tail -n 1)
sumstr="${maxval} + ${minval}"
difstr="${maxval} - ${minval}"
sum=$(echo "${sumstr}" | bc)
dif=$(echo "${difstr}" | bc)
echo "${sumstr} = ${sum}"
echo "${difstr} = ${dif}"
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Exercise 6

Exercise 6

1. Write a script that. . .
◦ stores the min and max value from data.txt in variables

myscript.sh

#!/bin/bash
minval=$(cat data.txt | sort | head -n 1)
maxval=$(cat data.txt | sort | tail -n 1)

sumstr="${maxval} + ${minval}"
difstr="${maxval} - ${minval}"
sum=$(echo "${sumstr}" | bc)
dif=$(echo "${difstr}" | bc)
echo "${sumstr} = ${sum}"
echo "${difstr} = ${dif}"
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Exercise 6

Exercise 6

1. Write a script that. . .
◦ computes the sum and difference of the min and max values and

stores them in variables

myscript.sh

#!/bin/bash
minval=$(cat data.txt | sort | head -n 1)
maxval=$(cat data.txt | sort | tail -n 1)
sumstr="${maxval} + ${minval}"
difstr="${maxval} - ${minval}"

sum=$(echo "${sumstr}" | bc)
dif=$(echo "${difstr}" | bc)
echo "${sumstr} = ${sum}"
echo "${difstr} = ${dif}"
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Exercise 6

Exercise 6

1. Write a script that. . .
◦ computes the sum and difference of the min and max values and

stores them in variables

myscript.sh

#!/bin/bash
minval=$(cat data.txt | sort | head -n 1)
maxval=$(cat data.txt | sort | tail -n 1)
sumstr="${maxval} + ${minval}"
difstr="${maxval} - ${minval}"
sum=$(echo "${sumstr}" | bc)
dif=$(echo "${difstr}" | bc)

echo "${sumstr} = ${sum}"
echo "${difstr} = ${dif}"
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Exercise 6

Exercise 6

1. Write a script that. . .
◦ writes out the values of the sum and difference to the terminal

myscript.sh

#!/bin/bash
minval=$(cat data.txt | sort | head -n 1)
maxval=$(cat data.txt | sort | tail -n 1)
sumstr="${maxval} + ${minval}"
difstr="${maxval} - ${minval}"
sum=$(echo "${sumstr}" | bc)
dif=$(echo "${difstr}" | bc)
echo "${sumstr} = ${sum}"
echo "${difstr} = ${dif}"

value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Exercise 6

Exercise 6

1. Write a script that. . .
◦ computes and then writes out one, two, and three times the minimal

value.

myscript.sh

#!/bin/bash
minval=$(cat data.txt | sort | head -n 1)
maxval=$(cat data.txt | sort | tail -n 1)
sumstr="${maxval} + ${minval}"
difstr="${maxval} - ${minval}"
sum=$(echo "${sumstr}" | bc)
dif=$(echo "${difstr}" | bc)
echo "${sumstr} = ${sum}"
echo "${difstr} = ${dif}"
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Exercise 6

Exercise 6

1. Write a script that. . .

2. Run the script.

Terminal
alice@hpc:$

./script.sh
97593 + 34966 = 132559
97593 - 34966 = 62627
1*34966 = 34966
2*34966 = 69932
3*34966 = 104898

Exercise 6

Exercise 6

1. Write a script that. . .

2. Run the script.

Terminal
alice@hpc:$./script.sh

97593 + 34966 = 132559
97593 - 34966 = 62627
1*34966 = 34966
2*34966 = 69932
3*34966 = 104898

Exercise 6

Exercise 6

1. Write a script that. . .

2. Run the script.

Terminal
alice@hpc:$./script.sh
97593 + 34966 = 132559
97593 - 34966 = 62627
1*34966 = 34966
2*34966 = 69932
3*34966 = 104898

Exercise 6

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"

value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Exercise 6Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"

value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Repetitive tasks often can be made easier:

1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another

2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
i=1
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

i=2
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"
i=3
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes

3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
i=1
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"
i=2
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

i=3
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes

3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
i=1
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"
i=2
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"
i=3
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes

3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
for

i in 1 2 3
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value

4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
for i

in 1 2 3
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value

4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
for i in

1 2 3
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value

4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
for i in 1 2 3

do
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value

4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
for i in 1 2 3
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value

4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
for i in 1 2 3
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value

4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Some tasks repeat multiple times with only slight variations:

Terminal
for i in $(seq 3)
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Repetitive tasks often can be made easier:
1. isolate the "change" from one repetition to another
2. introduce a variable that incorporates all that changes
3. use a for-loop structure to automatically adjust the value
4. use the seq command to abbreviate the value list

Basic Loop Structure

Basic Loop Structure

Terminal
for i in <list>
do
...
done

1. i behaves like a normal variable in bash

2. list can be a list of numbers, files, words, . . .

Basic Loop StructureBasic Loop Structure

Basic Loop Structure

Terminal
for i in <list>
do
...
done

1. i behaves like a normal variable in bash
2. list can be a list of numbers, files, words, . . .

Basic Loop Structure

Exercise 7

1. Adjust your script such that. . .
◦ the repetetive multiplication of the minval is incorporated into a loop.
◦ the multiplication goes up to 10 times the minimal value.

2. Run the script.

Basic Loop StructureExercise 7

Exercise 7

1. Adjust your script such that. . .
◦ the repetetive multiplication of the minval is incorporated into a loop.

myscript.sh

#!/bin/bash
...
value=$(echo "1*${minval}" | bc)
echo "1*${minval} = ${value}"
value=$(echo "2*${minval}" | bc)
echo "2*${minval} = ${value}"
value=$(echo "3*${minval}" | bc)
echo "3*${minval} = ${value}"

Exercise 7

Exercise 7

1. Adjust your script such that. . .
◦ the repetetive multiplication of the minval is incorporated into a loop.

myscript.sh

#!/bin/bash
...
i=1
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"
i=2
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"
i=3
value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

Exercise 7

Exercise 7

1. Adjust your script such that. . .
◦ the repetetive multiplication of the minval is incorporated into a loop.

myscript.sh

#!/bin/bash
...
for i in 1 2 3
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Exercise 7

Exercise 7

1. Adjust your script such that. . .
◦ the repetetive multiplication of the minval is incorporated into a loop.

myscript.sh

#!/bin/bash
...
for i in $(seq 3)
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Exercise 7

Exercise 7

1. Adjust your script such that. . .
◦ the multiplication goes up to 10 times the minimal value.

myscript.sh

#!/bin/bash
...
for i in $(seq 10)
do

value=$(echo "${i}*${minval}" | bc)
echo "${i}*${minval} = ${value}"

done

Exercise 7

Exercise 7

1. Adjust your script such that. . .

2. Run the script.

Terminal
alice@hpc:$

./script.sh
97593 + 34966 = 132559
97593 - 34966 = 62627
1*34966 = 34966
2*34966 = 69932
...
10*34966 = 349660

Exercise 7

Exercise 7

1. Adjust your script such that. . .

2. Run the script.

Terminal
alice@hpc:$./script.sh

97593 + 34966 = 132559
97593 - 34966 = 62627
1*34966 = 34966
2*34966 = 69932
...
10*34966 = 349660

Exercise 7

Exercise 7

1. Adjust your script such that. . .

2. Run the script.

Terminal
alice@hpc:$./script.sh
97593 + 34966 = 132559
97593 - 34966 = 62627
1*34966 = 34966
2*34966 = 69932
...
10*34966 = 349660

Exercise 7

Environment variables

Exercise 7

Variable Scopes

outer.sh
#!/bin/bash
user=$(whoami)
echo "User in outer script: ${user}"
./inner.sh

inner.sh
#!/bin/bash
echo "User in inner script: ${user}"

The variable user is defined in the outer script,
but accessed in the inner and outer one.

Variable Scopes

Variable Scopes

Terminal
alice@hpc:$./outer.sh
User in outer script: alice
User in inner script:

alice

The value of variables is not inherited
to sub-scripts, or sub-programs

Variable Scopes

Variable Scopes

outer.sh
#!/bin/bash
export user=$(whoami)
echo "User in outer script: ${user}"
./inner.sh

inner.sh
#!/bin/bash
echo "User in inner script: ${user}"

Adding export to the variable assignment
makes it globaly available ⇒ Environment variable

Variable Scopes

Variable Scopes

Terminal
alice@hpc:$./outer.sh
User in outer script: alice
User in inner script: alice

Adding export to the variable assignment
makes it globaly available ⇒ Environment variable

Variable Scopes

Predefined Environment Variables

Terminal
alice@hpc:$ env

There are predefined environment variables. (Full list with env)

Variable ScopesPredefined Environment Variables

Predefined Environment Variables

Terminal
alice@hpc:$ echo ${HOME}
/home/alice/

e.g. ${HOME} contains the path to a users home directory

Predefined Environment Variables

Predefined Environment Variables

Terminal
alice@hpc:$ echo ${PATH}
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

${PATH} contains a list of paths
where program executables are searched for

Predefined Environment Variables

Predefined Environment Variables

Terminal
alice@hpc:$ echo ${PATH}
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
alice@hpc:$ which gcc
/usr/bin/gcc

${PATH} contains a list of paths
where program executables are searched for

Predefined Environment Variables

Predefined Environment Variables

Terminal
alice@hpc:$ export PATH=${HOME}/bin:${PATH}
alice@hpc:$ echo ${PATH}
/home/alice/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Modifying ${PATH} allows to utilize
custom versions of software

Predefined Environment Variables

Predefined Environment Variables

Terminal
alice@hpc:$ export PATH=${HOME}/bin:${PATH}
alice@hpc:$ echo ${PATH}
/home/alice/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
alice@hpc:$ which gcc
/home/alice/bin/gcc

Modifying ${PATH} allows to utilize
custom versions of software

Predefined Environment Variables

Monitoring System
Resources

Predefined Environment Variables

top — Table of Processes

Execute "top" to start. Quit with Ctrl+c.

top — Table of Processes

top — Table of Processes

System resources

top — Table of Processes

top — Table of Processes

Load average for past one, five, and fifteen minutes

top — Table of Processes

top — Table of Processes

CPU-time (us→user, sy→system, id→idle)

top — Table of Processes

top — Table of Processes

Memory load

top — Table of Processes

top — Table of Processes

Swap load (try to avoid any swap load)

top — Table of Processes

top — Table of Processes

List of running processes

top — Table of Processes

top — Table of Processes

Process ID

top — Table of Processes

top — Table of Processes

Process owner

top — Table of Processes

top — Table of Processes

CPU load from this process

top — Table of Processes

top — Table of Processes

Memory usage of this process

top — Table of Processes

top — Table of Processes

Time since process started

top — Table of Processes

top — Table of Processes

Command that started the process

top — Table of Processes

htop — An Alternative to top

Execute "htop" to start. Quit with Ctrl+c.

top — Table of Processeshtop — An Alternative to top

htop — An Alternative to top

System resources

htop — An Alternative to top

htop — An Alternative to top

Load average for past one, five, and fifteen minutes

htop — An Alternative to top

htop — An Alternative to top

Load on each CPU-core

htop — An Alternative to top

htop — An Alternative to top

Memory load

htop — An Alternative to top

htop — An Alternative to top

Swap load (try to avoid any swap load)

htop — An Alternative to top

htop — An Alternative to top

List of runnig processec

htop — An Alternative to top

htop — An Alternative to top

Process ID

htop — An Alternative to top

htop — An Alternative to top

Process owner

htop — An Alternative to top

htop — An Alternative to top

CPU load from this process

htop — An Alternative to top

htop — An Alternative to top

Memory usage of this process

htop — An Alternative to top

htop — An Alternative to top

Time since process started

htop — An Alternative to top

htop — An Alternative to top

Command that started the process

htop — An Alternative to top

htop — An Alternative to top

Hotkeys

htop — An Alternative to top

Take Home Messages

htop — An Alternative to top

Take Home Messages

• Linux does what you say, not what you mean!

• Linux does not ask for confirmation!
• Linux assumes you know what you are doing!
• The terminal is a powerful tool! Learn to use it!
• Be lazy and learn how to script!

Take Home Messages

Take Home Messages

• Linux does what you say, not what you mean!
• Linux does not ask for confirmation!

• Linux assumes you know what you are doing!
• The terminal is a powerful tool! Learn to use it!
• Be lazy and learn how to script!

Take Home Messages

Take Home Messages

• Linux does what you say, not what you mean!
• Linux does not ask for confirmation!
• Linux assumes you know what you are doing!

• The terminal is a powerful tool! Learn to use it!
• Be lazy and learn how to script!

Take Home Messages

Take Home Messages

• Linux does what you say, not what you mean!
• Linux does not ask for confirmation!
• Linux assumes you know what you are doing!
• The terminal is a powerful tool! Learn to use it!

• Be lazy and learn how to script!

Take Home Messages

Take Home Messages

• Linux does what you say, not what you mean!
• Linux does not ask for confirmation!
• Linux assumes you know what you are doing!
• The terminal is a powerful tool! Learn to use it!
• Be lazy and learn how to script!

Take Home Messages

Take Home Messages

Happy Computing!

Take Home MessagesTake Home Messages

Further Reading

Linux Tutorial:
https://hpc-wiki.info/hpc/Introduction_to_Linux_in_HPC
Linux Cheat Sheet:
https://linuxconfig.org/linux-commands-cheat-sheet

Take Home MessagesFurther Reading

https://hpc-wiki.info/hpc/Introduction_to_Linux_in_HPC
https://linuxconfig.org/linux-commands-cheat-sheet

