- Dekanat
- Arbeitsbereiche
- Mitglieder der Fakultät
- Fachschaft Mathematik
- Öffentlichkeitsarbeit
- IT-Abteilung
- Floer Center of Geometry
- HDM@RUB
- Servicezentrum/SZMA
- Chancengleichheit
- Bibliothek
- Förderverein
Prof. Dr. Kai Zehmisch
Chairholder, Chair symplectic geometry
Adress:
Ruhr-Universität Bochum
Fakultät für Mathematik
Universitätsstraße 150
D-44780 Bochum
Room:
IB 3/59
E-Mail:
Kai.Zehmisch(at)rub.de

2023
[1]
P. Albers, H. Geiges, and K. Zehmisch, ‘A symplectic dynamics proof of the degree-genus formula’, Arnold Mathematical Journal [ISSN: 2199-6792], 2023, Published, doi: 10.1007/s40598-021-00195-7.
[2]
H. Geiges, M. Sağlam, and K. Zehmisch, ‘Why bootstrapping for J-holomorphic curves fails in ’,
Analysis and mathematical physics, vol. 13, no. 1, Art. no. 11, Jan. 2023, doi: 10.1007/s13324-022-00775-6.
[3]
H. Geiges and K. Zehmisch, A course on holomorphic discs. Cham: Springer Nature Switzerland, 2023. doi: 10.1007/978-3-031-36064-0.
2022
[1]
M. Kwon, K. Wiegand, and K. Zehmisch, ‘Diffeomorphism type via aperiodicity in Reeb dynamics’, Journal of fixed point theory and applications, vol. 24, no. 2, Art. no. 21, Apr. 2022, doi: 10.1007/s11784-022-00954-9.
[2]
M. Kwon, K. Wiegand, and K. Zehmisch, ‘Diffeomorphism type via aperiodicity in Reeb dynamics’, in Symplectic Geometry, A. Abbondandolo, H. Hofer, U. Frauenfelder, and F. Schlenk, Eds. Cham: Springer International Publishing, 2022, pp. 801–826. doi: 10.1007/978-3-031-19111-4_27.
2021
[1]
P. Albers, H. Geiges, and K. Zehmisch, ‘Pseudorotations of the 2-disc and Reeb flows on the 3-sphere’, Ergodic theory and dynamical systems, vol. 42, no. 2, pp. 402–436, Mar. 2021, doi: 10.1017/etds.2021.15.
[2]
H. Geiges, K. Sporbeck, and K. Zehmisch, ‘Subcritical polarisations of symplectic manifolds have degree one’, Archiv der Mathematik, vol. 117, no. 2, pp. 227–231, Apr. 2021, doi: 10.1007/s00013-021-01605-0.
[3]
H. Geiges, M. Kwon, and K. Zehmisch, ‘Diffeomorphism type of symplectic fillings of unit cotangent bundles’, Journal of topology and analysis, vol. 15, no. 03, pp. 683–705, Jul. 2021, doi: 10.1142/s1793525321500424.
2020
[1]
H. Geiges and K. Zehmisch, ‘Odd-symplectic forms via surgery and minimality in symplectic dynamics’, Ergodic theory and dynamical systems, vol. 40, no. 3, pp. 699–713, 2020, doi: 10.1017/etds.2018.60.
[2]
Y. Bae, K. Wiegand, and K. Zehmisch, ‘Periodic orbits in virtually contact structures’, Journal of topology and analysis, vol. 12, no. 2, pp. 371–418, 2020, doi: 10.1142/s1793525319500481.
2019
[1]
M. Kegel, J. Schneider, and K. Zehmisch, ‘Symplectic dynamics and the 3-sphere’, Israel journal of mathematics, vol. 235, no. 1, pp. 245–254, Dec. 2019, doi: 10.1007/s11856-019-1956-5.
[2]
M. Kwon, K. Wiegand, and K. Zehmisch, ‘Diffeomorphism type via aperiodicity in Reeb dynamics’, 2019.
[3]
H. Geiges, M. Kwon, and K. Zehmisch, ‘Diffeomorphism type of symplectic fillings of unit cotangent bundles’, 2019.
[4]
P. Albers, H. Geiges, and K. Zehmisch, ‘A symplectic dynamics proof of the degree-genus formula’, May 08, 2019. https://arxiv.org/pdf/1905.03054.pdf
[5]
P. Albers, H. Geiges, and K. Zehmisch, ‘Pseudorotations of the 2-disc and Reeb flows on the 3-sphere’, May 2019. [Online]. Available: https://arxiv.org/pdf/1804.07129.pdf
[6]
K. Barth, J. Schneider, and K. Zehmisch, ‘Symplectic dynamics of contact isotropic torus complements’, Münster journal of mathematics, vol. 12, no. 1, pp. 31–48, 2019, doi: 10.17879/85169765495.
[7]
K. Barth, H. Geiges, and K. Zehmisch, ‘The diffeomorphism type of symplectic fillings’, The journal of symplectic geometry, vol. 17, no. 4, pp. 929–971, 2019, doi: 10.4310/jsg.2019.v17.n4.a1.
[8]
M. Kwon and K. Zehmisch, ‘Fillings and fittings of unit cotangent bundles of odd-dimensional spheres’, The quarterly journal of mathematics, vol. 70, no. 4, pp. 1253–1364, 2019, doi: 10.1093/qmath/haz018.
2018
[1]
P. Albers, H. Geiges, and K. Zehmisch, ‘Reeb dynamics inspired by Katok’s example in Finsler geometry’, Mathematische Annalen, vol. 370, no. 3–4, pp. 1883–1907, 2018, doi: 10.1007/s00208-017-1612-5.
[2]
K. Wiegand and K. Zehmisch, ‘Two constructions of virtually contact structures’, The journal of symplectic geometry, vol. 16, no. 2, pp. 563–583, 2018, doi: 10.4310/jsg.2018.v16.n2.a5.
2017
[1]
M. Dörner, H. Geiges, and K. Zehmisch, ‘Finsler geodesics, periodic Reeb orbits, and open books’, European journal of mathematics, vol. 3, no. 4, pp. 1058–1075, 2017, doi: 10.1007/s40879-017-0158-0.
[2]
S. Suhr and K. Zehmisch, ‘Polyfolds, cobordisms, and the strong Weinstein conjecture’, Advances in mathematics, vol. 305, pp. 1250–1267, 2017, doi: 10.1016/j.aim.2016.06.030.
[3]
H. Geiges and K. Zehmisch, ‘Cobordisms between symplectic fibrations’, Manuscripta mathematica, vol. 153, no. 3–4, pp. 331–340, 2017, doi: 10.1007/s00229-016-0901-8.
2016
[1]
H. Geiges, N. Röttgen, and K. Zehmisch, ‘From a Reeb orbit trap to a Hamiltonian plug’, Archiv der Mathematik, vol. 107, no. 4, pp. 397–404, 2016, doi: 10.1007/s00013-016-0916-0.
[2]
K. Zehmisch, ‘Analytic filling of totally real tori’, Münster journal of mathematics, vol. 9, pp. 207–219, 2016, doi: 10.17879/35209711850.
[3]
S. Suhr and K. Zehmisch, ‘Linking and closed orbits’, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 86, no. 1, pp. 133–150, 2016, doi: 10.1007/s12188-016-0118-5.
[4]
H. Geiges and K. Zehmisch, ‘Reeb dynamics detects odd balls’, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, vol. 15, no. Issue special, pp. 663–681, 2016, doi: 10.2422/2036-2145.201404_006.
[5]
H. Geiges and K. Zehmisch, ‘The Weinstein conjecture for connected sums’, International mathematics research notices, vol. 2016, no. 2, pp. 325–342, 2016, doi: 10.1093/imrn/rnv124.
2015
[1]
U. Frauenfelder and K. Zehmisch, ‘Gromov compactness for holomorphic discs with totally real boundary conditions’, Journal of fixed point theory and applications, vol. 17, no. 3, pp. 521–540, 2015, doi: 10.1007/s11784-015-0229-0.
[2]
G. Benedetti and K. Zehmisch, ‘On the existence of periodic orbits for magnetic systems on the two-sphere’, Journal of modern dynamics, vol. 9, no. 1, pp. 141–146, 2015, doi: 10.3934/jmd.2015.9.141.
[3]
K. Zehmisch, ‘Holomorphic jets in symplectic manifolds’, Journal of fixed point theory and applications, vol. 17, no. 2, pp. 379–402, 2015, doi: 10.1007/s11784-014-0178-z.
2014
[1]
H. Geiges, N. Röttgen, and K. Zehmisch, ‘Trapped Reeb orbits do not imply periodic ones’, Inventiones mathematicae, vol. 198, no. 1, pp. 211–217, 2014, doi: 10.1007/s00222-014-0500-9.
[2]
M. Dörner, H. Geiges, and K. Zehmisch, ‘Open books and the Weinstein conjecture’, The quarterly journal of mathematics, vol. 65, no. 3, pp. 869–885, 2014, doi: 10.1093/qmath/hat055.
[3]
K. Zehmisch, ‘Lagrangian non-squeezing and a geometric inequality’, Mathematische Zeitschrift, vol. 277, no. 1–2, pp. 285–291, 2014, doi: 10.1007/s00209-013-1254-6.
2013
[1]
K. Zehmisch and F. Ziltener, ‘Discontinuous symplectic capacities’, Journal of fixed point theory and applications, vol. 14, no. 1, pp. 299–307, 2013, doi: 10.1007/s11784-013-0148-x.
[2]
K. Zehmisch, ‘The annulus property of simple holomorphic discs’, The journal of symplectic geometry, vol. 11, no. 1, pp. 135–161, 2013, doi: 10.4310/jsg.2013.v11.n1.a7.
[3]
H. Geiges and K. Zehmisch, ‘Erratum to: How to recognize a 4-ball whenyou see one’, Münster journal of mathematics, vol. 6, pp. 555–556, 2013, [Online]. Available: https://www.uni-muenster.de/FB10/mjm/vol_6/mjm_vol_6_16.pdf
[4]
H. Geiges and K. Zehmisch, ‘How to recognize a 4-ball when you see one’, Münster journal of mathematics, vol. 6, pp. 525–554, 2013, [Online]. Available: https://www.uni-muenster.de/FB10/mjm/vol_6/mjm_vol_6_15.pdf
[5]
K. Zehmisch, ‘The codisc radius capacity’, Electronic research announcements in mathematical sciences, vol. 20, pp. 77–96, 2013, doi: 10.3934/era.2013.20.77.
[6]
S. Suhr and K. Zehmisch, ‘Linking and closed orbits’, 2013. doi: 10.14760/owp-2013-15.
2012
[1]
H. Geiges and K. Zehmisch, ‘Symplectic cobordisms and the strong Weinstein conjecture’, Mathematical proceedings of the Cambridge Philosophical Society, vol. 153, no. 2, pp. 261–279, 2012, doi: 10.1017/s0305004112000163.
2011
[1]
H. Geiges and K. Zehmisch, ‘Cerf’s theorem and other applications of the filling with holomorphic discs’, Oberwolfach reports, vol. 8, pp. 1055–1056, 2011.
2010
[1]
H. Geiges and K. Zehmisch, ‘Eliashberg’s proof of Cerf’s theorem’, Journal of topology and analysis, vol. 2, no. 4, pp. 543–579, 2010, doi: 10.1142/s1793525310000446.
2007
[1]
K. Groh, M. Schwarz, K. Smoczyk, and K. Zehmisch, ‘Mean curvature flow of monotone Lagrangian submanifolds’, Mathematische Zeitschrift, vol. 257, no. 2, pp. 295–327, 2007, doi: 10.1007/s00209-007-0126-3.
2005
[1]
K. Zehmisch, ‘Strong fillability and the Weinstein conjecture’, 2005. [Online]. Available: https://arxiv.org/pdf/math/0405203.pdf
2003
[1]
P. Albers and K. Zehmisch, ‘Nash-Kuiper C1-isometric embedding theorem’, Arbeitsgemeinschaft mit aktuellem Thema: Convex integration, vol. 2003,15. Math. Forschungsinst., Oberwolfach-Walke, p. 7, 2003.