|
|
|
Lehrstuhl Mathematik & Informatik
Dr. Michael Schmitt |
|
|
|
|
|
|
|
|
Michael Schmitt |
Address: |
Fakultät für Mathematik
Lehrstuhl Mathematik & Informatik
Ruhr-Universität Bochum
D-44780 Bochum
Germany |
Office: |
NA 1/71 |
eMail: | mschmitt [AT] lmi [DOT] ruhr-uni-bochum
[DOT] de |
Telephone: |
0234-32-23209 |
Fax: |
0234-32-14465 |
|
Publications
Note: Some publications are subject to copyright transfer. Only a
preliminary version can be downloaded then. You are welcome to e-mail for a
reprint of the final version. Thank you.
Journals
- On using the Poincaré polynomial for calculating the VC dimension of
neural networks, by Michael Schmitt. Neural Networks 14(10),
page 1465, 2001.
- Simplicity and robustness of fast and frugal heuristics, by Laura
Martignon and Michael Schmitt, Minds and Machines 9(4), pages
565-593, 1999. [Abstract]
- Proving hardness of neural network training problems, by Michael
Schmitt. Neural Networks 10(8), pages 1533-1534,
1997.
Conferences
- Bayesian networks and inner product
spaces, by Atsuyoshi Nakamura, Michael Schmitt, Niels Schmitt,
and Hans Ulrich Simon. In J. Shawe-Taylor and Y. Singer (eds.),
Proceedings of the 17th Annual Conference on Learning Theory COLT
2004, Lecture Notes in Artificial Intelligence, volume 3120, pages
518-533, Springer-Verlag, Berlin, 2004. [Abstract]
- RBF neural networks and Descartes' rule of
signs, by Michael Schmitt. In N. Cesa-Bianchi, M. Numao, and
R. Reischuk (eds.), Proceedings of the 13th International Conference on
Algorithmic Learning Theory ALT02, Lecture Notes in Artificial
Intelligence, volume 2533, pages 321-335, Springer-Verlag, Berlin,
2002. [Abstract]
- Computing time lower bounds for recurrent
sigmoidal neural networks, by Michael Schmitt. In T. G. Dietterich, S.
Becker, and Z. Ghahramani (eds.), Advances in Neural Information Processing
Systems 14, volume 1, pages 503-510, MIT Press, Cambridge, MA, 2002. [Abstract]
- Complexity of learning for networks of spiking
neurons with nonlinear synaptic interactions, by Michael Schmitt. In G.
Dorffner, H. Bischof, and K. Hornik (eds.), Proceedings of the International
Conference on Artificial Neural Networks ICANN 2001, Lecture Notes in
Computer Science, volume 2130, pages 247-252, Springer-Verlag, Berlin, 2001. [Abstract]
- Product unit neural networks with constant
depth and superlinear VC dimension, by Michael Schmitt. In G. Dorffner,
H. Bischof, and K. Hornik (eds.), Proceedings of the International
Conference on Artificial Neural Networks ICANN 2001, Lecture Notes in Computer Science,
volume 2130, pages 253-258, Springer-Verlag, Berlin, 2001. [Abstract]
- Radial basis function neural networks have
superlinear VC dimension, by Michael Schmitt. In D. Helmbold and B.
Williamson (eds.), Proceedings of the 14th Annual Conference on
Computational Learning Theory COLT 2001 and 5th European Conference on
Computational Learning Theory EuroCOLT 2001, Lecture Notes in
Artificial Intelligence, volume 2111,
pages 14-30, Springer-Verlag, Berlin, 2001. [Abstract]
- VC dimension bounds for higher-order
neurons, by Michael Schmitt. In Proceedings of the 9th
International Conference on Artificial Neural Networks ICANN99,
volume 2, pages 563-568, IEE Conference Publication No. 470,
Institution of Electrical Engineers, London, 1999. [Abstract]
- On the sample complexity for
neural trees, by Michael Schmitt. In M. M. Richter,
C. H. Smith, R. Wiehagen and T. Zeugmann (eds.), Proceedings of the
9th International Conference on Algorithmic Learning Theory
ALT'98, Lecture Notes in Artificial Intelligence, volume 1501,
pages 375-384, Springer-Verlag, Berlin, 1998. [Abstract]
- On the complexity of computing and learning with networks of
spiking neurons, by Wolfgang Maass and Michael Schmitt. In
Electronic Proceedings of the Fifth International Symposium on
Artificial Intelligence and Mathematics, http://rutcor.rutgers.edu/~amai/,
1998. [Abstract]
- Improving the performance of satisficing cognitive algorithms, by
Michael Schmitt and Laura Martignon. Annual Meeting of the Society for
Judgement and Decision Making J/DM, 1997. [Abstract]
- Unsupervised learning in networks of spiking
neurons using temporal coding, by Berthold Ruf and Michael Schmitt. In
W. Gerstner, A. Germond, M. Hasler and J.-D. Nicoud (eds.), Proceedings of
the 7th International Conference on Artificial Neural Networks - ICANN'97,
Lecture Notes in Computer Science, volume 1327, pages 361-366, Springer-Verlag,
Berlin, 1997. [Abstract]
- Hebbian learning in networks of spiking
neurons using temporal coding, by Berthold Ruf and Michael Schmitt. In
J. Mira, R. Moreno-Díaz and J. Cabestany (eds.), Biological and Artificial
Computation: From Neuroscience to Technology. Proceedings of the International
Work-Conference on Artificial and Natural Neural Networks IWANN'97, Lecture
Notes in Computer Science, volume 1240, pages 380-389, Springer-Verlag, Berlin,
1997. [Abstract]
Contributions to Books
- Unsupervised learning and self-organization in networks of
spiking neurons, by Thomas Natschläger, Berthold Ruf, and Michael
Schmitt. In U. Seiffert and L. C. Jain (eds.), Self-Organizing
Neural Networks: Recent Advances and Applications, Studies in
Fuzziness and Soft Computing, vol. 78, pages 45-73, Physica-Verlag,
Heidelberg, 2002. [Abstract]
- Abzählbarkeit; Axiom; Backpropagation; Explosion, kombinatorische;
Formalismus; Gödelscher Satz; Gradientenmethode; Kalkül; Knoten; Knoten,
verborgene, Neuronen, verborgene; Lernregel; Netzarchitektur;
Rekursionstheorie, Theorie rekursiver Funktionen; System, formales;
Theorem; Widerspruchsfreiheit,Konsistenz; XOR-Problem.
- In Gerhard Strube u.a. (Hrsg.), Wörterbuch der
Kognitionswissenschaft. Klett-Cotta, Stuttgart,
1996.
A Survey Paper
- Einführung in die Komplexität des
Rechnens und Lernens mit neuronalen Netzen, von Michael Schmitt. In
Georg Dorffner, Knut Möller, Gerhard Paaß, Raúl Rojas und Stephan
Vogel (Hrsg.), Konnektionismus und Neuronale Netze: Beiträge zur
Herbstschule HeKoNN96, Münster/Westf., S. 41-52, St. Augustin,
1996. GMD-Studien Nr. 300, GMD-Forschungszentrum Informationstechnik GmbH.
An earlier version appeared as
- Die Komplexität des Rechnens und Lernens mit neuronalen Netzen - Ein
Kurzführer, von Michael Schmitt. In Georg Dorffner, Knut Möller, Gerhard
Paaß und Stephan Vogel (Hrsg.), Konnektionismus und Neuronale
Netze: Beiträge zur Herbstschule HeKoNN95, Münster/Westf.,
S. 83-93, St. Augustin, 1995. GMD-Studien Nr. 272,
GMD-Forschungszentrum Informationstechnik GmbH.
Unpublished Technical Reports
- Unwind Property von Algebren endlicher Wörter und Mengen bezüglich
polynomiell zeitbeschränkter Programme, von Michael Schmitt und Volker
Sperschneider. Interner Bericht Nr. 8/87, Fakultät für Informatik der
Universität Karlsruhe, März 1987.
Doctoral Dissertation
Diploma Thesis
- Untere Schranken für Schaltkreise und die Polynomielle
Hierarchie, von Michael Schmitt. Diplomarbeit an der Fakultät für
Informatik der Universität Karlsruhe, Institut für Logik, Komplexität
und Deduktionssysteme, 1988.
|
|
|
|
|