Veröffentlichungen
[ 1] Heinzner, P.: Linear äquivariante Einbettungen Steinscher Räume.
Math. Ann. 280 (1988), 147-160
[ 2] Heinzner, P.: Fixpunktmengen kompakter Gruppen in Teilgebieten Steinscher
Mannigfaltigkeiten.
J. reine und angew. Math. 402 (1989), 128-137
[ 3] Heinzner, P.: Kompakte Transformationsgruppen Steinscher Räume.
Math. Ann. 285 (1989), 13-28
[ 4] Gellhaus, C.; Heinzner, P.: Komplexe Flächen mit holomorphen Vektorfeldern
Abh. Math. Sem. Univ. Hamburg 60 (1990), 37-46
[ 5] Heinzner, P.: Geometric invariant theory on Stein spaces.
Math. Ann. 289 (1991), 631-662
[ 6] Heinzner, P.; Sergeev, A.: The extended matrix disc is a domain of
holomorphy.
Izvestiya of Academy of Sciences of USSR, math. series 55 (1991), N3, 647-657;
Translation: Vol. 38
[ 7] Heinzner, P.: On the automorphisms of special domains in C^n
Indiana J. 41 (1992), 707-712
[ 8] Abate, M.; Heinzner, P.: Holomorphic actions on contractible domains
without fixed points.
Math. Z. 211 (1992), 547-555
[ 9] Heinzner, P.; Kutzschebauch, F.: Le principe d'Oka équivariant.
C.R. Acad. Sci. Paris. 315 Nr.1 (1992), 1265-1267
[10] Heinzner, P.: Equivariant holomorphic extensions of real analytic
manifolds.
Bull. Soc. Math. France 121 (1993), 445-463
[11] Heinzner, P.; Huckleberry, A. T.; Loose, F.: Kählerian extensions of the
symplectic reduction.
J. reine und angew. Math. 455 (1994), 123-140
[12] Heinzner, P.; Huckleberry, A. T.: Invariant plurisubharmonic exhaustions
and retractions.
Manuscripta math. 83 (1994), 19-29
[13] Heinzner, P.; Loose, F.: Reduction of complex Hamiltonian G-spaces.
Geometric and Functional Analysis 4 (1994), 288-297
[14] Heinzner, P.; Kutzschebauch, F.: An equivariant version of Grauert's Oka
principle.
Invent. math. 119 (1995), 317-346
[15] Heinzner, P.; Huckleberry, A. T.; Kutzschebauch, F.: A real analytic version of Abels' theorem and complexifications of proper Lie group actions.
In: Complex Analysis and Geometry, Lecture Notes in Pure and Applied
Mathematics, 173, Dekker, New York, 1996, 229-273
[16] Heinzner, P.; Huckleberry, A. T.: Kählerian potentials and convexity
properties of the moment map.
Invent. math. 126 (1996), 65-84
[17] Heinzner, P.; Iannuzzi, A.: Integration of local actions on holomorphic
fiber spaces.
Nagoya Math. J. 146 (1997), 31-53
[18] Heinzner, P.; Migliorini.: Quotients with respect to holomorphic actions
of reductive groups.
In: Complex Analysis and Geometry, Pitman Research Notes in Mathematics Series
366, ed.: Ancona, V.; Ballico, E.; Mirò-Roig; Silva, A.; Longman,1997, 141-152
[19] Heinzner, P.; Migliorini, L.; Polito, M.: Semistable quotients.
Annali della Scuola Normale Superiore di Pisa XXVI (1998), 233-248
[20] Heinzner, P.: The minimum
principle from a Hamiltonian point of view.
Doc. Math. J. DMV 3 (1998), 1-14
[21] Gilligan, B.; Heinzner, P.: Globalization of holomorphic actions on
principal bundles.
Math. Nachr. 189 (1998), 145-156
[22] Heinzner, P.; Loose, F.: A global slice theorem for proper Hamiltonian
actions.
Manuscripta math. 98, (1999) 295-305
[23] Hausen, J.; Heinzner, P.:
Actions of compact groups on coherent sheaves.
Transformation Groups 4, (1999), 25-34
[24] Heinzner, P.; Huckleberry, A.: Analytic Hilbert quotients.
MSRI-Proceedings Vol. 37,In: Several complex variables, ed. M. Schneider and Yum-Tong Siu, Cambridge Univ. Press, 1999, 299-339
[25] Heinzner, P.; Huckleberry, A.: Kählerian structures on symplectic
reductions.
In: Complex analysis and algebraic geometry (A volume in memory of Michael
Schneider), ed. T. Peternell and F. Schreier, deGruyter Verlag 2000, 226-253
[26] Heinzner, P.; Migliorini, L.:
Projectivity of moment map quotients.
Osaka J. Math. 38 (2001), 167-184
[27] Heinzner, P.; Schützdeller,
P.: The extended future tube conjecture for S0(1,n)
Ann. Scuola Norm. Sup. Pisa Sci. (5) Vol.III (2004), 39-52
[28] Akhiezer, D.; Heinzner, P.:
Spherical Stein Spaces
Manuscripta math. 114 (2004), 327-334
[29] Heinzner, P; Schwarz, G.:
Cartan decomposition of the moment map
Math. Ann. 337 (2007), 197-232
[30] Heinzner, P; Huckleberry,
A. Zirnbauer, M.: Symmetry classes of disordered fermions
Commun.Math.Phys. 257 (2005), 725-771
[31] Heinzner, P; Stötzel, H.:
Semistable points with respect to real forms
Math. Ann. 338 (2007), 1-9
[32] Heinzner, P; Stötzel, H.: Critical points of the norm square of the moment
map
In: Global aspects of complex geometry. Ed.: Catanese at all, Springer Berlin
Heidelberg 2006, 211-226
[33] Heinzner, P; Schwarz, G.;
Stötzel, H.: Stratifications with respect to actions of real reductive groups
Compositio Math. 144 (2008), 163-185
[34] Greb, D.; Heinzner, P.: Kählerian
reduction in steps, In: Symmetry and spaces : In honor of Gerry Schwarz, ed. Campbell, Harold E. A. Eddy; Helminck, Loek; Kraft, Hans-Peter; Wehlau, David L. Boston; Berlin: Birkhäuser.
Progress in Mathematics, 278 (2010), 63-82
[35] Heinzner, P.; Schützdeller, P.:
Convexity properties of gradient maps
Advances in Mathematics, Vol. 225 (2010), 1119-1133
[36] Biliotti, L.; Ghigi, A.; Heinzner, P.:
Coadjoint orbitopes
Osaka J. Math. Vol. 51, No. 4 (2014), 935-969.
[37] Biliotti, L.; Ghigi, A.; Heinzner, P.:
Polar orbitopes
Communications in Analysis and Geometry, Vol. 21, No. 3 (2013), 579-606.
[39] Biliotti, L.; Ghigi, A.; Heinzner, P.: Invariant convex sets in polar representations
Israel Journal of Mathematics 213,1 (2016) 423--441
[40] Fritsch; K.; Heinzner, P.: Equivariant embeddings of strongly pseudoconvex Cauchy--Riemann
manifolds, arXiv:2002.00219 (2020)
[41] Heinzner, P.; Stratmann, B: Invariant Kähler potentials and symplectic reduction, arXiv:2002.00191 (2020)